BFS 844. 走迷宫 845. 八数码

本文介绍了如何使用BFS算法解决两类经典问题:走迷宫和八数码。在走迷宫问题中,从左上角到右下角的最短路径通过BFS寻找;八数码问题中,通过BFS找到将初始状态转换为目标状态所需的最少交换次数。文章提供了详细的BFS模板代码和示例,并解释了关键判断条件的重要性。
摘要由CSDN通过智能技术生成

844. 走迷宫

给定一个 n×m 的二维整数数组,用来表示一个迷宫,数组中只包含 0 或 1,其中 0 表示可以走的路,1 表示不可通过的墙壁。

最初,有一个人位于左上角 (1,1) 处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角 (n,m) 处,至少需要移动多少次。

数据保证 (1,1) 处和 (n,m) 处的数字为 0,且一定至少存在一条通路。

输入格式
第一行包含两个整数 n 和 m。

接下来 n 行,每行包含 m 个整数(0 或 1),表示完整的二维数组迷宫。

输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤100

输入样例:

5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例:

8

BFS模板:
代码:

#include<iostream>
#include <cstring> //memset
#include<algorithm>
#include <queue>
using namespace std;

typedef pair<int, int> PII;

int n;
int m;
int g[110][110];
int helper[110][110];
PII op[] = {{-1,0},{1,0},{0,1},{0,-1}};
int bfs(){
    queue<PII> q;
    int step = 0;
    helper[0][0] = 0;
    q.push({0,0});
    while(q.size()){
        auto cur = q.front();
        q.pop();
        for(int i = 0; i<4; i++){
            int x = cur.first+op[i].first, y = cur.second+op[i].second;
            if(x>=0&&y>=0&&x<n&&y<m&&helper[x][y]==-1&&g[x][y]==0){
                q.push({x,y});
                helper[x][y] = helper[cur.first][cur.second]+1;
            }
        }
    }
    return helper[n - 1][m - 1];
}
int main()
{   
    memset(helper,-1,sizeof helper);
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];

    cout << bfs() << endl;

    return 0;
}

845. 八数码

在一个 3×3 的网格中,1∼8 这 8 个数字和一个 x 恰好不重不漏地分布在这 3×3 的网格中。

例如:

1 2 3
x 4 6
7 5 8

在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。

我们的目的是通过交换,使得网格变为如下排列(称为正确排列):

1 2 3
4 5 6
7 8 x

例如,示例中图形就可以通过让 x 先后与右、下、右三个方向的数字交换成功得到正确排列。

交换过程如下:

1 2 3   1 2 3   1 2 3   1 2 3
x 4 6   4 x 6   4 5 6   4 5 6
7 5 8   7 5 8   7 x 8   7 8 x

现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。

输入格式
输入占一行,将 3×3 的初始网格描绘出来。

例如,如果初始网格如下所示:

1 2 3 
x 4 6 
7 5 8 

则输入为:1 2 3 x 4 6 7 5 8

输出格式
输出占一行,包含一个整数,表示最少交换次数。

如果不存在解决方案,则输出 −1。

输入样例:

2  3  4  1  5  x  7  6  8

输出样例

19

思路:其实是一个经典的BFS问题,只不过由地图变成了状态。其实BFS问题本质上是状态的转变与到达,地图只是一种形式。
代码:

#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <queue>

using namespace std;
pair<int, int> op[] = { {1,0},{-1,0},{0,1},{0,-1} };
int bfs(const string& state) {
    string end = "12345678x";
    // printf("%p\n",&end);
    queue<string> q;
    q.push(state);
    // printf("%p\n",&(q.front()));
    unordered_map<string, int> d;
    d[state] = 0;
    while (q.size()) {
        string cur = q.front();
        if (cur == end) return d[end];
        q.pop();
        int pst = cur.find('x'); //当前的字符串
        for (int i = 0; i < 4; i++) {
            string s(cur);
            int x = pst / 3 + op[i].first, y = pst % 3 + op[i].second; //新的xy坐标
            if (x < 3 && y < 3 && x >= 0 && y >= 0) {
                swap(s[x * 3 + y], s[pst]); //新的状态
                if (!d.count(s)) {//问题:为什么加这个判断,不加会怎么样
                    d[s] = d[cur] + 1;
                    q.push(s);
                }
            }
        }

    }
    return -1;
}
int main()
{
    char s;

    string state;
    for (int i = 0; i < 9; i++)
    {
        cin >> s;
        state += s;
    }

    cout << bfs(state) << endl;

    return 0;
}

问题1:
为什么加这个判断,不加会怎么样?
数据会被污染。比如这个状态之前到达过,后面的其他状态可能绕路也会到达这个状态。若发生了这种情况,存储在Map中表示该状态的distance就会被更新为更长的。
那为什么不需要判断大小更新呢?因为先前到达的状态肯定distance要小于后面到达的状态。所以不需要比较也知道前面就到达的状态distance要更小。也就是最小路径

问题2:
初学C++, 容器保存的是复制了的字符串还是保存的是地址呢?
这里比较了两个地址,结果是不同的,因此可以判断,容器保存的是复制后的变量地址,是重新开辟的地址。 要多看STL源码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值