Spark 核心编程RDD

目录

1.1 什么是RDD

1.2 核心属性

1.3 执行原理

1.4 基础编程

1.4.1 创建RDD

1.4.2 RDD 并行度与分区

1.4.3 RDD转换算子 

单Value类型

双Value类型

Key-Value类型

案例

1.4.4 RDD行动算子

1.4.5 RDD序列化

闭包检查

序列化方法和属性

Kryo序列化框架

RDD 依赖关系

RDD阶段划分 

 RDD任务划分

 RDD持久化

​1.4.6 RDD分区器

1.4.7 RDD 文件读取与保存


Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,用于处理不同的应用场景。三大数据结构分别是:

  • RDD : 弹性分布式数据集
  • 累加器:分布式共享只写变量
  • 广播变量:分布式共享只读变量

接下来我们一起看看这三大数据结构是如何在数据处理中使用的。

1.1 什么是RDD

        RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

  • 弹性
    • 存储的弹性:内存与磁盘的自动切换;
    • 容错的弹性:数据丢失可以自动恢复;
    • 计算的弹性:计算出错重试机制;
    • 分片的弹性:可根据需要重新分片。
  • 分布式:数据存储在大数据集群不同节点上
  • 数据集:RDD 封装了计算逻辑,并不保存数据
  • 数据抽象:RDD 是一个抽象类,需要子类具体实现
  • 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的RDD,在新的RDD 里面封装计算逻辑
  • 可分区、并行计算 

1.2 核心属性

  • 分区列表

 RDD 数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性

 

  • 分区计算函数

 Spark 在计算时,是使用分区函数对每一个分区进行计算

 

  • RDD 之间的依赖关系

         RDD 是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个 RDD 建立依赖关系

  • 分区器(可选)

 当数据为 KV 类型数据时,可以通过设定分区器自定义数据的分区

 

  • 首选位置(可选)

 计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算

 

1.3 执行原理

        从计算的角度来讲,数据处理过程中需要计算资源(内存 & CPU)和计算模型(逻辑)。执行时,需要将计算资源和计算模型进行协调和整合。

        Spark 框架在执行时,先申请资源,然后将应用程序的数据处理逻辑分解成一个一个的计算任务。然后将任务发到已经分配资源的计算节点上,  按照指定的计算模型进行数据计算。最后得到计算结果。

        RDD 是 Spark 框架中用于数据处理的核心模型,接下来我们看看,在 Yarn 环境中,RDD 的工作原理:

1)启动 Yarn 集群环境

 2)Spark 通过申请资源创建调度节点和计算节点

 

 3)Spark 框架根据需求将计算逻辑根据分区划分成不同的任务

 

 4)调度节点将任务根据计算节点状态发送到对应的计算节点进行计算

 

 从以上流程可以看出 RDD 在整个流程中主要用于将逻辑进行封装,并生成 Task 发送给Executor 节点执行计算,接下来我们就一起看看 Spark 框架中RDD 是具体是如何进行数据处理的。

1.4 基础编程

1.4.1 创建RDD

在 Spark 中创建RDD 的创建方式可以分为四种:

1)从集合(内存)中创建 RDD

从集合中创建RDD,Spark 主要提供了两个方法:parallelize 和makeRDD

// 准备环境 local[*] *代表CPU最大核心数
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
val sc = new SparkContext(sparkConf)

// 创建RDD
// 从内存中创建RDD,内存集合中的数据作为处理的数据源
val seq = Seq[Int](1, 2, 3, 4)
//val rdd: RDD[Int] = sc.parallelize(seq) // parallelize:并行
val rdd: RDD[Int] = sc.makeRDD(seq) // makeRDD就是调用了parallelize,更容易理解

rdd.collect().foreach(println)

// 关闭环境
sc.stop()

2)从外部存储(文件)创建RDD

// 准备环境 local[*] *代表CPU最大核心数
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
val sc = new SparkContext(sparkConf)

// 创建RDD
// 从文件中创建RDD,文件中的数据作为处理的数据源
// path路径默认以项目的根路径为基准,也可以写绝对路径
//val rdd: RDD[String] = sc.textFile("data/1.txt")

// path可以是文件,也可以是文件夹
//val rdd: RDD[String] = sc.textFile("data/")

// path支持通配符
//val rdd: RDD[String] = sc.textFile("data/1*.txt")

// path支持hdfs路径
val rdd: RDD[String] = sc.textFile("hdfs://hadoop102:8080//test.txt")

rdd.collect().foreach(println)

// 创建RDD
// 从文件中创建RDD,文件中的数据作为处理的数据源
val rdd: RDD[(String, String)] = sc.wholeTextFiles("data")

rdd.collect().foreach(println)
"""
	|(file:/B:/pycharm_project/mingyu-classes/data/1.txt,Hello world
	|Hello spark)
	|(file:/B:/pycharm_project/mingyu-classes/data/11.txt,Hello world
	|Hello spark)
	|(file:/B:/pycharm_project/mingyu-classes/data/2.txt,Hello scala
	|Hello Hive)
""".stripMargin

// 关闭环境
sc.stop()

3)从其他 RDD 创建

主要是通过一个RDD 运算完后,再产生新的RDD。

4)直接创建 RDD(new)

使用 new 的方式直接构造RDD,一般由Spark 框架自身使用。

1.4.2 RDD 并行度与分区

        默认情况下,Spark 可以将一个作业切分多个任务后,发送给 Executor 节点并行计算,而能够并行计算的任务数量我们称之为并行度。这个数量可以在构建RDD 时指定。记住,这里的并行执行的任务数量,并不是指的切分任务的数量,不要混淆了

① 内存中的数据分区

// 准备环境 local[*] *代表CPU最大核心数
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
val sc = new SparkContext(sparkConf)

// 创建RDD
// 从内存中创建RDD,numSlices表示划分成多少个任务
val rdd = sc.makeRDD(
	List(1, 2, 3, 4), 2
)

// 将处理的数据保存成分区文件
rdd.saveAsTextFile("output")

rdd.collect().foreach(println)

// 关闭环境
sc.stop()

 

分区数目默认值为最大可用CPU核心数 ,也可以配置

// 准备环境 local[*] *代表CPU最大核心数
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
sparkConf.set("spark.default.parallelism","5")
val sc = new SparkContext(sparkConf)

 ② 从文件中读取数据进行分区

        读取文件数据时,数据是按照Hadoop 文件读取的规则进行切片分区,而切片规则和数据读取的规则有些差异

// 准备环境 local[*] *代表CPU最大核心数
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD")
val sc = new SparkContext(sparkConf)

"""
	| 1. 数据以行为单位进行读取
	|   Spark读取文件时,采用的是以Hadoop方式读取,
	|   因此一行一行读取,和文件字节数没有关系
	|
	| 2. 数据读取时以偏移量为单位,偏移量不会重复读取
	| 1@@   => 012
	| 2@@   => 345
	| 3     => 6
	|
	| 3. 数据分区的偏移量范围的计算
	| 分区号 文件内容索引范围 内容   解释
	| 0 => [0,3]  => 12   (因为[0,3]是左闭右闭,把2也读进来了,意味着[3,5]都读进来了)
	| 1 => [3,6]  => 3     (因为[3,5]已经被读出,不能再读,只能读[6,7],就是数字3)
	| 2 => [6,7]
""".stripMargin

val rdd: RDD[String] = sc.textFile("data/1.txt", 2)
		"""
			| word.txt 14byte
			| 1234567@@  => 012345678
			| 89@@       => 9101112
			| 0          => 13
			|
			| 2个分区
			| [0,7]      => 1234567
			| [7,14]     => 890
		""".stripMargin

1.4.3 RDD转换算子 

单Value类型

        RDD 根据数据处理方式的不同将算子整体上分为Value 类型、双 Value 类型和Key-Value

类型

  • 将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换、
  1. map

def map[U: ClassTag](f: T => U): RDD[U]
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")

val sc = new SparkContext(sparkConf)

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))

val valueRdd: RDD[Int] = rdd.map(_ * 2)
valueRdd.collect().foreach(println) // 2,4,6,8

map方法的性能比较差, 但是基本不会造成内存溢出

val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Operator")

val sc = new SparkContext(sparkConf)

// 1 RDD的计算一个分区内的数据是一个一个执行的
//   只有前面的数据所有流程都执行完了才会执行下一个数据
// 2 不同分区的数据计算是无序的
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 1)

val mapRdd = rdd.map(
	num => {
		println(">>>>>>>>>>" + num)
		num
	}
)

val mapRdd1 = mapRdd.map(
	num => {
		println("##########" + num)
		num
	}
)

mapRdd1.collect()
"""
	|>>>>>>>>>>1
	|##########1
	|>>>>>>>>>>2
	|##########2
	|>>>>>>>>>>3
	|##########3
	|>>>>>>>>>>4
	|##########4
""".stripMargin

 rdd.mapPartitions

方法性能更高一些,但是易造成内存溢出

def mapPartitions[U: ClassTag]( 
    f: Iterator[T] => Iterator[U],
    preservesPartitioning: Boolean = false
): RDD[U]
val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 2)

// 将一个分区中的数据全部拿到之后才进行下一个分区计算
// 但是会将整个分区中的数据加载到内存中
// 如果处理的数据不被释放,存在对象引用
// 内存小,数据量大,易造成内存溢出
val mapParti = rdd.mapPartitions(
	iter => {
		println(">>>>>>>>>")
		iter.map(_ * 2)
	}
)

mapParti.collect().foreach(println)
"""
	|>>>>>>>>>
	|>>>>>>>>>
	|2
	|4
	|6
	|8
""".stripMargin
		val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 2)
		
		// 将一个分区中的数据全部拿到之后才进行下一个分区计算
		// 但是会将整个分区中的数据加载到内存中
		// 如果处理的数据不被释放,存在对象引用
		// 内存小,数据量大,易造成内存溢出
		val mapParti = rdd.mapPartitions(
			iter => {
				List(iter.max).iterator
			}
		)
		
		mapParti.collect().foreach(println) // 2  4

 map mapPartitions 的区别

  • 数据处理角度

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。

  • 功能的角度

Map 算子主要目的将数据源中的数据进行转换和改变。但是不会减少或增多数据。MapPartitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变, 所以可以增加或减少数据

  • 性能的角度

Map 算子因为类似于串行操作,所以性能比较低,而是 mapPartitions 算子类似于批处理,所以性能较高。但是mapPartitions 算子会长时间占用内存,那么这样会导致内存可能不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。使用 map 操作。

mapPartitionsWithIndex

        将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

def mapPartitionsWithIndex[U: ClassTag]( 
    f: (Int, Iterator[T]) => Iterator[U],
    preservesPartitioning: Boolean = false
): RDD[U]

 回去第二个分区的数据

		val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 2)
		
		// mapPartitionsWithIndex根据分区索引操作
		val mapParti = rdd.mapPartitionsWithIndex(
			(index, iter) => {
				if (index == 1) {
					iter
				} else {
					Nil.iterator
				}
			}
		)
		
		mapParti.collect().foreach(println) // 3,4

 flatMap

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]
		val rdd = sc.makeRDD(List(List(1, 2), List(3, 4)), 1)
		
		// 将处理的数据进行扁平化后再进行映射处理
		val mapParti = rdd.flatMap(
			list => list
		)
		
		mapParti.collect().foreach(println) // 1 2 3 4

 将 List(List(1,2),3,List(4,5))进行扁平化操作

		// 创建RDD
		val rdd = sc.parallelize(List(List(1, 2), 3, List(4, 5)), 1)
		
		// 扁平化操作
		val flattenedRdd = rdd.flatMap {
			case x: List[_] => x
			case x: Int => List(x)
		}
		
		// 输出结果
		flattenedRdd.foreach(println)

 glom

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变

def glom(): RDD[Array[T]]

// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 5, 6), 3)

// glom
val glomRdd = rdd.glom()

// 输出结果
glomRdd.foreach(arr => println(arr.mkString(" ")))
3 4
1 2
5 6

 计算所有分区最大值求和(分区内取最大值,分区间最大值求和)

// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 5, 6), 3)

// glom
val glomRdd = rdd.glom()

// 输出结果
val maxRdd: RDD[Int] = glomRdd.map(_.max)
val sum: Int = maxRdd.reduce(_ + _)
maxRdd.foreach(a => println(s"最大值${a}"))
println(sum / 3)

 groupBy

  • 函数签名
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]
  • 函数说明

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为shuffle。极限情况下,数据可能被分在同一个分区中,个组的数据在一个分区中,但是并不是说一个分区中只有一个组

// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 5, 6), 3)
def fun(num: Int): Int = num % 2
val groupRdd: RDD[(Int, Iterable[Int])] = rdd.groupBy(fun)
groupRdd.collect().foreach(println)
//	(0,CompactBuffer(2, 4, 6))
// (1,CompactBuffer(1, 3, 5))

filter

  • 函数签名
def filter(f: T => Boolean): RDD[T]
  • 函数说明

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。

当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜

val sc = new SparkContext(sparkConf)
// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 5, 6), 3)
val filterRdd: RDD[Int] = rdd.filter(i => i % 2 != 0)
filterRdd.collect().foreach(println)
//  1
//	3
//	5

sample

  • 函数签名
def sample( withReplacement: Boolean, 
            fraction: Double,
            seed: Long = Utils.random.nextLong
): RDD[T]
  • 函数说明

根据指定的规则从数据集中抽取数据

// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 5, 6), 3)

// 抽取数据不放回(伯努利算法)
// 伯努利算法:又叫 0、1 分布。例如扔硬币,要么正面,要么反面。
// 具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不要
// 第一个参数:抽取的数据是否放回,false:不放回
// 第二个参数:抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
// 第三个参数:随机数种子

val sampleRdd: RDD[Int] = rdd.sample(false, 0.2, 472634629875426L)
val sampleRdd2: RDD[Int] = rdd.sample(false, 1)
sampleRdd.collect().foreach(println)

// 抽取数据放回(泊松算法)
// 第一个参数:抽取的数据是否放回,true:放回;false:不放回
// 第二个参数:重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
// 第三个参数:随机数种子
val bsRdd: RDD[Int] = rdd.sample(true, 2)

distinct

  • 函数签名
def distinct()(implicit ord: Ordering[T] = null): RDD[T]

def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
  • 函数说明

数据集中重复的数据去重

// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 1, 2), 3)

val distinctRdd: RDD[Int] = rdd.distinct(3)

distinctRdd.collect().foreach(x => print(s"${x} "))
// 3 4 1 2 

coalesce

  • 函数签名
def coalesce(numPartitions: Int, shuffle: Boolean = false,
             partitionCoalescer: Option[PartitionCoalescer] = Option.empty) 
             (implicit ord:Ordering[T] = null)
    : RDD[T]
  • 函数说明

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率

当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本

// 创建RDD
val rdd = sc.makeRDD(1 to 100, 10)

val coalesceRdd: RDD[Int] = rdd.coalesce(2)

println(s"转换后的分区数:${coalesceRdd.getNumPartitions}")
//转换后的分区数:2

repartition

  • 函数签名
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
  • 函数说明

该操作内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的RDD,还是将分区数少的 RDD 转换为分区数多的RDD,repartition 操作都可以完成,因为无论如何都会经 shuffle 过程。

// 创建RDD
val rdd = sc.makeRDD(List(1, 2, 3, 4, 5, 6), 3)

val repartitionRdd: RDD[Int] = rdd.repartition(1)
println(repartitionRdd.getNumPartitions) // 1
val repartitionRdd5: RDD[Int] = rdd.repartition(5)
println(repartitionRdd5.getNumPartitions) // 5

1)coalesce可以不进行shuffle,repartition必须进行shuffle

 2)coalesce只能减少分区,而repartition可以减少和增加

sortBy

函数签名

def sortBy[K]( f:(T) => K,

            ascending: Boolean =  true, numPartitions: Int = this.partitions.length)

            (implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
  • 函数说明

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原RDD 的分区数一致。中间存在 shuffle 的过程

// 创建RDD
val rdd = sc.makeRDD(List(8, 2, 4, 3, 6, 5, 1, 3), 3)

val sortedRdd: RDD[Int] = rdd.sortBy((num: Int) => num)

sortedRdd.collect().foreach(x => print(s"${x} "))
// 1 2 3 3 4 5 6 8

双Value类型

intersection

  • 函数签名
def intersection(other: RDD[T]): RDD[T]
  • 函数说明


对源RDD 和参数RDD 求交集后返回一个新的RDD

// 创建RDD
val dataRdd = sc.makeRDD(List(1, 2, 3, 4, 5), 3)
val dataRdd2 = sc.makeRDD(List(4, 5, 6, 7), 3)

val isRdd: RDD[Int] = dataRdd.intersection(dataRdd2)

isRdd.collect().foreach(x => print(s"${x} ")) // 4 5 
println(isRdd.getNumPartitions) //3

思考一个问题:如果两个RDD 数据类型不一致怎么办?

		// 创建RDD
		val dataRdd = sc.makeRDD(List(1, 2, 3, 4, 5), 3)
		val dataRdd2 = sc.makeRDD(List("4", "5", "6", "7"), 3)
		
		// 转换成List[Int]
		val intRdd: RDD[Int] = dataRdd2.map(_.toInt)
		val isRdd = dataRdd.intersection(intRdd)
		
		isRdd.collect().foreach(x => print(s"${x} ")) // 4 5
		println(isRdd.getNumPartitions) //3

union

  • 函数签名
def union(other: RDD[T]): RDD[T]
  • 函数说明

对源RDD 和参数RDD 求并集后返回一个新的RDD

		// 创建RDD
		val dataRdd = sc.makeRDD(List(1, 2, 3), 3)
		val dataRdd2 = sc.makeRDD(List(3, 4, 5, 6), 3)
		
		val unionRdd = dataRdd.union(dataRdd2)
		unionRdd.collect().foreach(x => print(s"${x} "))
		// 1 2 3 3 4 5 6 

subtract

  • 函数签名
def subtract(other: RDD[T]): RDD[T]
  • 函数说明

以一个 RDD 元素为主,去除两个 RDD 中重复元素,将其他元素保留下来。求差集

		// 创建RDD
		val dataRdd = sc.makeRDD(List(1, 2, 3), 3)
		val dataRdd2 = sc.makeRDD(List(3, 4, 5, 6), 3)
		
		val subtractRdd = dataRdd.subtract(dataRdd2)
		subtractRdd.collect().foreach(x => print(s"${x} "))
		// 1 2 

zip

  • 函数签名
def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
  • 函数说明

将两个 RDD 中的元素,以键值对的形式进行合并。其中,键值对中的Key 为第 1 个 RDD中的元素,Value 为第 2 个 RDD 中的相同位置的元素。

		// 创建RDD
		val dataRdd = sc.makeRDD(List(1, 2, 3), 3)
		val dataRdd2 = sc.makeRDD(List(3, 4, 5), 3)
		val dataRdd3 = sc.makeRDD(List("a", "b", "c"), 3)

		
		val zipRdd = dataRdd.zip(dataRdd2)
		zipRdd.collect().foreach(x => print(s"${x} "))
		// (1,3) (2,4) (3,5) 
		// (1,a) (2,b) (3,c)

分区数量不一致

		// 创建RDD
		val dataRdd = sc.makeRDD(List(1, 2, 3), 3)
		val dataRdd2 = sc.makeRDD(List("a", "b", "c"), 2)
		
		// 分区数目不一致
		//val zipRdd = dataRdd.zip(dataRdd2.repartition(3))
		val zipRdd = dataRdd2.zip(dataRdd.coalesce(2, false))
		zipRdd.collect().foreach(x => print(s"${x} "))
		//(a,1) (b,2) (c,3)

 数据量不一致

// 创建RDD
val dataRdd = sc.makeRDD(List(1, 2, 3), 3)
val dataRdd2 = sc.makeRDD(List("a", "b", "c", "d"), 3)

// 创建索引
val zipWithIndexRdd: RDD[(Long, Int)] = dataRdd.zipWithIndex().map { case (value, index) => (index, value) }
val zipWithIndexRdd2: RDD[(Long, String)] = dataRdd2.zipWithIndex().map { case (value, index) => (index, value) }

val result = zipWithIndexRdd.join(zipWithIndexRdd2).map { case (index, (value1, value2)) => (value1, value2) }


// 数据量不一致
result.collect().foreach(x => print(s"${x} "))
//(1,a) (2,b) (3,c)

需要注意的是,使用zipWithIndex操作可能会影响性能,因为它需要为每个元素添加一个索引。如果你的RDD数据量很大,那么可能需要考虑使用其他方法来实现zip操作。 

Key-Value类型

partitionBy

  • 函数签名

def partitionBy(partitioner: Partitioner): RDD[(K, V)]

  • 函数说明

将数据按照指定Partitioner 重新进行分区。Spark 默认的分区器是HashPartitioner

val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1,"aaa"),(2,"bbb"),(3,"ccc")),3)

import org.apache.spark.HashPartitioner
val rdd2: RDD[(Int, String)] = rdd.partitionBy(new HashPartitioner(2))

reduceByKey

  • 函数签名
def reduceByKey(func: (V, V) => V): RDD[(K, V)]

def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
  • 函数说明

可以将数据按照相同的Key 对Value 进行聚合

// 创建RDD
val dataRdd = sc.makeRDD(Array(("aaa", 1), ("bbb", 2), ("ccc", 3), ("ccc", 3)), 3)

val reduceRdd: RDD[(String, Int)] = dataRdd.reduceByKey(_ + _)

reduceRdd.collect().foreach(x => print(s"${x} "))
// (bbb,2) (ccc,6) (aaa,1) 

groupByKey

  • 函数签名
def groupByKey(): RDD[(K, Iterable[V])]


def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]


def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
  • 函数说明

将数据源的数据根据 key 对 value 进行分组

val dataRDD1 =
    sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))

 reduceByKey和groupByKey区别

  • 从shuffle的角度:reduceByKey和groupByKey都存在shuffle的操作,但是reduceByKey可以在shuffle前对分区内相同key的数据进行预聚合(combine)功能,这样会减少落盘的数据量,而groupByKey只是进行分组,不存在数据量减少的问题,reduceByKey性能比较高。
  • 从功能的角度:reduceByKey其实包含分组和聚合的功能。groupByKey只能分组,不能聚合,所以在分组聚合的场合下,推荐使用reduceByKey,如果仅仅是分组而不需要聚合。那么还是只能使用groupByKey 

aggregateByKey

  • 函数签名
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, 
    combOp: (U, U) => U): RDD[(K, U)]
  • 函数说明

将数据根据不同的规则进行分区内计算和分区间计算

		// 创建RDD
		val dataRdd = sc.makeRDD(Array(("aaa", 1), ("aaa", 2), ("bbb", 3), ("bbb", 4), ("bbb", 5), ("aaa", 6)), 2)
		
		
		// TODO : 取出每个分区内相同 key 的最大值然后分区间相加
		// aggregateByKey 算子是函数柯里化,存在两个参数列表
		// 1. 第一个参数列表中的参数表示初始值
		// 2. 第二个参数列表中含有两个参数
		//	2.1 第一个参数表示分区内的计算规则
		//	2.2 第二个参数表示分区间的计算规则
		val aggregateByKeyRdd = dataRdd.aggregateByKey(0)(
			(x, y) => math.max(x, y),
			(x, y) => x + y
		)
		aggregateByKeyRdd.collect().foreach(x => print(s"${x} "))
		// (bbb,8) (aaa,8) 

foldByKey

  • 函数签名

def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

  • 函数说明

当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为foldByKey

		// 创建RDD
		val dataRdd = sc.makeRDD(Array(("aaa", 1), ("aaa", 2), ("bbb", 3), ("bbb", 4), ("bbb", 5), ("aaa", 6)), 2)
		
		// 就可以简化为foldByKey 算子是函数柯里化,存在两个参数列表
		// 当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为foldByKey

		val aggregateByKeyRdd = dataRdd.foldByKey(0)((x, y) => x + y)
		aggregateByKeyRdd.collect().foreach(x => print(s"${x} "))
		// (bbb,12) (aaa,9) 

combineByKey

  • 函数签名
def combineByKey[C]( createCombiner: V => C, mergeValue: (C, V) => C,

                    mergeCombiners: (C, C) => C): RDD[(K, C)]
  • 函数说明

最通用的对key-value 型 rdd 进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致。

		val list: List[(String, Int)] = List(("a", 88), ("b", 95), ("a", 91), ("b", 93),
			("a", 95), ("b", 98))
		val input: RDD[(String, Int)] = sc.makeRDD(list, 2)
		
		// 第一个参数:将相同key的第一个数据进行结构的转换,实现操作
		// 第二个参数:分区内计算规则
		// 底单个参数:分区间计算规则
		val combineRdd: RDD[(String, (Int, Int))] = input.combineByKey((_, 1),
			(acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
			(acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
		)
		
		combineRdd.mapValues {
			case (num, count) => {
				num / count
			}
		}.collect().foreach(x => print(s"${x} "))

reduceByKey、foldByKey、aggregateByKey、combineByKey的区别?

  • reduceByKey:相同key的第一个数据不进行任何计算,分区内和分区间计算规则相同
  • foldByKey: 相同key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同
  • aggregateByKey:相同key的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相同
  • combineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。

sortByKey

  • 函数签名
def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)

: RDD[(K, V)]
  • 函数说明

在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序的

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3))) 
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(true)

val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(false)

join

  • 函数签名
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
  • 函数说明

在类型为(K,V)和(K,W)的RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的RDD

		val input: RDD[(String, Int)] = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3)), 2)
		val input2: RDD[(String, Int)] = sc.makeRDD(List(("a", 4), ("b", 5), ("c", 6)), 2)
		
		input.join(input2).collect().foreach(x => print(s"${x} "))
		// (b,(2,5)) (a,(1,4)) (c,(3,6)) 

leftOuterJoin

  • 函数签名
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
  • 函数说明

类似于 SQL 语句的左外连接

val input: RDD[(String, Int)] = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3)), 2)
val input2: RDD[(String, Int)] = sc.makeRDD(List(("a", 4), ("b", 5)), 2)
		
input.leftOuterJoin(input2).collect().foreach(x => print(s"${x} "))
// (b,(2,Some(5))) (a,(1,Some(4))) (c,(3,None)) 

cogroup

  • 函数签名
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
  • 函数说明

在类型为(K,V)和(K,W)的RDD 上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的 RDD

cogroup => connect + group

val input: RDD[(String, Int)] = sc.makeRDD(List(("a", 1), ("b", 2), ("c", 3)), 2)
val input2: RDD[(String, Int)] = sc.makeRDD(List(("a", 4), ("b", 5), ("c", 6), ("c", 7)), 2)
		
input.cogroup(input2).collect().foreach(x => print(s"${x} "))
//input.cogroup(input2).collect().foreach(println)
// (b,(CompactBuffer(2),CompactBuffer(5))) (a,(CompactBuffer(1),CompactBuffer(4))) (c,(CompactBuffer(3),CompactBuffer(6, 7))) 
		

案例

数据:agent.log:时间戳,省份,城市,用户,广告,中间字段使用空格分隔。

需求:统计出每一个省份每个广告被点击数量排行的 Top3

先写需求,再写代码

// 1、获取数据
// 时间戳 省份 城市 用户 广告
val dataRdd: RDD[String] = sc.textFile("data/agent.log")

// 2、结构化数据
// 时间戳 省份 城市 用户 广告
// =>
// ((省份,广告),1)
val mapRdd: RDD[((String, String), Int)] = dataRdd.map {
	line => {
		val lineData: Array[String] = line.split(" ")
		((lineData(1), lineData(4)), 1)
	}
}

// 3、求和
// ((省份,广告),1) => ((省份,广告),sum)
val reduceRdd: RDD[((String, String), Int)] = mapRdd.reduceByKey(_ + _)

// 4、再次结构化数据
// (省份,(广告,sum))
val reMapRdd: RDD[(String, (String, Int))] = reduceRdd.map {
	case ((pro, ad), sum) => {
		(pro, (ad, sum))
	}
}

// 5、分组
// 【(省份A,List((广告1,sum1),(广告2,sum2),...)),...】
val groupRdd: RDD[(String, Iterable[(String, Int)])] = reMapRdd.groupByKey()

// 6、降序取前三名
val result: RDD[(String, List[(String, Int)])] = groupRdd.mapValues(
	iter => {
		iter.toList.sortBy(_._2)(Ordering.Int.reverse).take(3)
	}
)

// 6.5、按省份升序输出
result.sortByKey(true).collect().foreach(println)

// 7、输出
//result.collect().foreach(println)

//result.collect().foreach(println)
/*
(0,List((2,29), (24,25), (26,24)))
(1,List((3,25), (6,23), (5,22)))
(2,List((6,24), (21,23), (29,20)))
(3,List((14,28), (28,27), (22,25)))
(4,List((12,25), (2,22), (16,22)))
(5,List((14,26), (21,21), (12,21)))
(6,List((16,23), (24,21), (22,20)))
(7,List((16,26), (26,25), (1,23)))
(8,List((2,27), (20,23), (11,22)))
(9,List((1,31), (28,21), (0,20)))
*/

1.4.4 RDD行动算子

reduce

  • 函数签名
def reduce(f: (T, T) => T): T
  • 函数说明

聚集RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))

// 聚合数据
val reduceResult: Int = rdd.reduce(_ + _)
println(reduceResult) // 10

collect

def collect(): Array[T]
  • 函数说明

在驱动程序中,以数组Array 的形式返回数据集的所有元素

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
rdd.collect().foreach(println)

// 收 集 数 据 到 Driver 

count

  • 函数签名
def count(): Long
  • 函数说明

返回RDD 中元素的个数

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
println(rdd.count())// 4

first

  • 函数签名
def first(): T
  • 函数说明

返回RDD 中的第一个元素

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
println(rdd.first())// 1

take

  • 函数签名
def take(num: Int): Array[T]
  • 函数说明

返回一个由RDD 的前 n 个元素组成的数组

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
println(rdd.take(2).mkString(" ")) // 1 2

takeOrdered

  • 函数签名
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
  • 函数说明

返回该 RDD 排序后的前 n 个元素组成的数组

val rdd: RDD[Int] = sc.makeRDD(List(2, 1, 4, 6))
println(rdd.takeOrdered(2).mkString(" ")) // 1 2

aggregate

  • 函数签名
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
  • 函数说明

分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合

val rdd: RDD[Int] = sc.makeRDD(List(4, 6, 8, 9), 8)
val i: Int = rdd.aggregate(0)(_ + _, _ + _)
val i2: Int = rdd.aggregate(10)(_ + _, _ + _)
println(i)// 27 = 
println(i2) //117 = [(4+10) + (6+10) + (8+10) + (9+10) + 4*(0+10)] + 10

fold

  • 函数签名
def fold(zeroValue: T)(op: (T, T) => T): T
  • 函数说明

折叠操作,aggregate 的简化版操作

val rdd: RDD[Int] = sc.makeRDD(List(4, 6, 8, 9), 8)
val i: Int = rdd.fold(0)(_ + _)
println(i) // 27

countByKey

  • 函数签名
def countByKey(): Map[K, Long]
  • 函数说明

统计每种 key 的个数

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (2, "b"), (1, "c"), (2, "6"), (3, "c"), (1, "f")), 8)
val intToLong: collection.Map[Int, Long] = rdd.countByKey()

intToLong.foreach(x => print(s"${x} "))
// (1,3) (2,2) (3,1)

save相关算子

  • 函数签名
def saveAsTextFile(path: String): Unit 

def saveAsObjectFile(path: String): Unit 

def saveAsSequenceFile(
        path: String,

        codec: Option[Class[_ <: CompressionCodec]] = None)
: Unit
  • 函数说明

将数据保存到不同格式的文件中

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (2, "b"), (1, "c"), (2, "6"), (3, "c"), (1, "f")), 1)
rdd.saveAsTextFile("data/save.txt")

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (2, "b"), (1, "c"), (2, "6"), (3, "c"), (1, "f")), 1)
rdd.saveAsObjectFile("data/save2.txt")

 

 

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (2, "b"), (1, "c"), (2, "6"), (3, "c"), (1, "f")), 1)
rdd.saveAsSequenceFile("data/save3.txt")

 

foreach

  • 函数签名
def foreach(f: T => Unit): Unit = withScope { 
        val cleanF = sc.clean(f)
        sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
  • 函数说明

分布式遍历RDD 中的每一个元素,调用指定函数

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))

// 收集后打印
rdd.map(num=>num).collect().foreach(println) println("****************")
// 分布式打印
rdd.foreach(println)

1.4.5 RDD序列化

闭包检查

从计算的角度, 算子以外的代码都是在Driver 端执行, 算子里面的代码都是在 Executor 端执行。那么在 scala 的函数式编程中,就会导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给Executor 端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作我们称之为闭包检测Scala2.12 版本后闭包编译方式发生了改变

序列化方法和属性

从计算的角度, 算子以外的代码都是在Driver 端执行, 算子里面的代码都是在 Executor端执行

package com.mingyu.spark.core.rdd.operator.serial

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Serial {
	def main(args: Array[String]): Unit = {
		val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Action")
		val sc = new SparkContext(sparkConf)
		
		val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark", "hive", "lalala"))
		
		val search = new Search("h")
		//search.getMatch1(rdd).collect().foreach(println)
		search.getMatch2(rdd).collect().foreach(println)
		sc.stop()
	}
}

// 类的构造参数未被val/var修饰时,类内方法用到了构造参数
// 则会将构造参数自动提升为类的属性
// 若构造参数未被val/var修饰,类内方法也没有用到构造参数
// 不会成为属性
class Search(val query: String) extends Serializable {
	def isMatch(s: String): Boolean = {
		s.contains(query)
	}
	
	// 函数序列化案例-外部函数
	def getMatch1(rdd: RDD[String]): RDD[String] = {
		rdd.filter(isMatch)
	}
	
	// 属性序列化案例-匿名函数
	def getMatch2(rdd: RDD[String]): RDD[String] = {
		//val s = query // s:String,局部变量,能被序列化,通过闭包检测
		rdd.filter(x => x.contains(query)) // 运行在Executor中,形成闭包
	}
}

Kryo序列化框架

参考地址: https://github.com/EsotericSoftware/kryo

Java 的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。Spark 出于性能的考虑,Spark2.0 开始支持另外一种Kryo 序列化机制。Kryo 速度是 Serializable 的 10 倍。当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化。

注意:即使使用Kryo 序列化,也要继承Serializable 接口

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD

object serializable_Kryo {
	def main(args: Array[String]): Unit = {
		val conf: SparkConf = new SparkConf()
			.setAppName("SerDemo")
			.setMaster("local[*]")
			// 替换默认的序列化机制
			.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
			// 注册需要使用 kryo 序列化的自定义类
			.registerKryoClasses(Array(classOf[Searcher]))
		val sc = new SparkContext(conf)
		val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello atguigu", "atguigu", "hahah"), 2)
		
		val searcher = new Searcher("hello")
		val result: RDD[String] = searcher.getMatchedRDD1(rdd)
		
		result.collect.foreach(println)
	}
}

case class Searcher(val query: String) {
	
	def isMatch(s: String) = {
		s.contains(query)
	}
	
	def getMatchedRDD1(rdd: RDD[String]) = {
		rdd.filter(isMatch)
	}
	
	def getMatchedRDD2(rdd: RDD[String]) = {
		val q = query
		rdd.filter(_.contains(q))
	}
}

RDD 依赖关系

RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD 的Lineage 会记录RDD 的元数据信息和转换行为,当该RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区

val sc = new SparkContext(conf)

sc.textFile("data/1.txt")
	.flatMap(_.split(" "))
	.map((_,1))
	.reduceByKey(_+_)
	.collect()

  • RDD 窄依赖

窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用, 窄依赖我们形象的比喻为独生子女。

class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)                                                                          

  • RDD 宽依赖

宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生

class ShuffleDependency[K: ClassTag, 
V: ClassTag, 
C: ClassTag]
(
	         @transient private val _rdd: RDD[_ <: Product2[K, V]],
             val partitioner: Partitioner,
             val serializer: Serializer = SparkEnv.get.serializer,
             val keyOrdering: Option[Ordering[K]] = None,
             val aggregator: Option[Aggregator[K, V, C]] = None,
             val mapSideCombine: Boolean = false
)

RDD阶段划分 

DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向, 不会闭环。例如,DAG 记录了RDD 的转换过程和任务的阶段。

 RDD任务划分

RDD 任务切分中间分为:Application、Job、Stage 和 Task

  • Application:初始化一个 SparkContext 即生成一个Application;、
  • Job:一个Action 算子就会生成一个Job;
  • Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1;
  • Task:一个 Stage 阶段中,最后一个RDD 的分区个数就是Task 的个数。

注意:Application->Job->Stage->Task 每一层都是 1 对 n 的关系。

 RDD持久化

1)RDD Cache缓存

        RDD 通过Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该RDD 将会被缓存在计算节点的内存中,并供后面重用

val rdd: RDD[String] = sc.makeRDD(List("hello spark", "hello scala"))
val bufferRdd: RDD[(String, Int)] = rdd.flatMap(_.split(" ")).map((_, 1))
// bufferRdd对象重用意义不大,RDD不存储数据,重用导致前面代码会重新执行一遍
//bufferRdd.reduceByKey(_ + _).collect().foreach(println)
//bufferRdd.groupByKey().collect().foreach(println)
// 数据缓存,内存
//bufferRdd.cache()
bufferRdd.persist(StorageLevel.DISK_ONLY)

        缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD 的一系列转换,丢失的数据会被重算,由于RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可, 并不需要重算全部Partition。

        Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或 cache。

        一些比较耗时的重要数据在操作时也可以使用Cache

2) checkpoint检查点

// checkpoint 检查点路径:hdfs或者本地
sc.setCheckpointDir("data/")

val rdd: RDD[String] = sc.makeRDD(List("hello spark", "hello scala"))
val bufferRdd: RDD[(String, Int)] = rdd.flatMap(_.split(" ")).map((_, 1))

// checkpoint 需要落盘,需要指定检查点保存路径
// 需要注意的是,checkpoint遇到Action算子之后,会独立执行作业(Action算子之前的操作再做一遍)
// 因此,配合Cache使用效率更高
bufferRdd.cache()
bufferRdd.checkpoint()
bufferRdd.collect()

 3)缓存和检查点区别

  • Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。
  • Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存储在HDFS 等容错、高可用的文件系统,可靠性高。
  • 建议对checkpoint()的RDD 使用Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次RDD。

 

1.4.6 RDD分区器

 Spark 目前支持Hash 分区和 Range 分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了RDD 中分区的个数、RDD 中每条数据经过Shuffle 后进入哪个分区,进而决定了Reduce 的个数。

  • 只有Key-Value 类型的RDD 才有分区器,非 Key-Value 类型的RDD 分区的值是 None
  • 每个RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。

用户自定义分区:

val rdd: RDD[(String, String)] = sc.makeRDD(List(
	("nba", "xxxxxxxxx"),
	("cba", "xxxxxxxxx"),
	("wnba", "xxxxxxxxx"),
	("nba", "xxxxxxxxx")
), 3)
val partRdd: RDD[(String, String)] = rdd.partitionBy(new MyPartitioner)

partRdd.saveAsTextFile("output")

class MyPartitioner extends Partitioner {
	
	// 分区数量
	override def numPartitions: Int = 3
	
	// 根据数据的key值返回数据所在的分区索引(从0开始)
	override def getPartition(key: Any): Int = {
		
		key match {
			case "nba" => 0
			case "wnba" => 1
			case _ => 2
		}
	}
}

1.4.7 RDD 文件读取与保存

        Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。文件格式分为:text 文件、csv 文件、sequence 文件以及Object 文件;

        文件系统分为:本地文件系统、HDFS、HBASE 以及数据库。

  • text 文件
// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")

// 保存数据
inputRDD.saveAsTextFile("output")
  • sequence 文件

SequenceFile 文件是Hadoop 用来存储二进制形式的key-value 对而设计的一种平面文件(Flat File)。在 SparkContext 中,可以调用sequenceFile[keyClass, valueClass](path)。

// 保 存 数 据 为 SequenceFile 
dataRDD.saveAsSequenceFile("output")

// 读取 SequenceFile 文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)
  • object 对象文件

对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过objectFile[T: ClassTag](path)函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。

// 保存数据
dataRDD.saveAsObjectFile("output")

// 读取数据
sc.objectFile[Int]("output").collect().foreach(println)

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值