小学生都能看明白的特征值分解和奇异值分解

特征值和特征向量不明白的小朋友先看这个

奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。

特征值分解

如果说一个向量v是方阵A的特征向量, λ \lambda λ是方阵A的特征值,将一定可以表示成下面的形式:
A ν = λ ν A\nu=\lambda\nu Aν=λν
特征值分解是将一个矩阵分解成下面的形式:
A = Q ∑ Q − 1 A=Q\sum Q^{-1} A=QQ1
其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。我这里引用了一些参考文献中的内容来说明一下。首先,要明确的是,一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。比如说下面的一个矩阵:
[ 3 0 0 1 ] \begin{bmatrix} 3&0\\0&1 \end{bmatrix} [3001]
这个矩阵M乘以一个向量(x,y)的结果是:
[ 3 0 0 1 ] [ x y ] = [ 3 x y ] \begin{bmatrix} 3&0\\0&1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} =\begin{bmatrix}3x\\y\end{bmatrix} [3001][xy]=[3xy]
其对应的线性变换是
在这里插入图片描述
上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值<1时时缩短),当矩阵不是对称的时候,假如说矩阵是下面的样子:
M = [ 1 1 0 1 ] M=\begin{bmatrix} 1&1\\0&1 \end{bmatrix} M=[1011]
它所描述的变换是下面的样子:
在这里插入图片描述
这其实是在平面上对一个轴进行的拉伸变换(如蓝色的箭头所示),在图中,蓝色的箭头是一个最主要的变化方向(变化方向可能有不止一个),如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了。反过头来看看之前特征值分解的式子,分解得到的Σ矩阵是一个对角阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)

当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通过图片来表示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。也就是之前说的:提取这个矩阵最重要的特征。总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵

奇异值分解

下面谈谈奇异值分解。特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:
A = U ∑ V T A=U\sum V^T A=UVT
假设A是一个NM的矩阵,那么得到的U是一个NN的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N*M的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值) V T V^T VT是一个N *N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片
在这里插入图片描述
那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵 A T ∗ A A^T*A ATA,将会得到一个方阵,我们用这个方阵求特征值可以得到:
( A T A ) ν i = λ i ν i (A^TA)\nu_i=\lambda_i\nu_i (ATA)νi=λiνi
这里得到的v,就是我们上面的右奇异向量。此外我们还可以得到:
σ i = λ i u i = 1 σ i A ν i \sigma_i=\sqrt\lambda_i\\ u_i=\frac{1}{\sigma_i}A\nu_i σi=λ iui=σi1Aνi
这里的σ就是上面说的奇异值,u就是上面说的左奇异向量。奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解:
A m × n ≈ U m × r ∑ r × r V r × n T A_{m×n}\approx U_{m×r}{\sum}_{r×r}V^T_{r×n} Am×nUm×rr×rVr×nT
r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:
在这里插入图片描述
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了

参考文献

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值