极大似然概念及举例

1 极大似然

1.1 问题描述

假设我们需要调查我们学校学生的身高分布。我们先假设学校所有学生的身高服从正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)。(注意:极大似然估计的前提一定是要假设数据总体的分布,如果不知道数据分布,是无法使用极大似然估计的),这个分布的均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2 未知,如果我们估计出这两个参数,那我们就得到了最终的结果。那么怎样估计这两个参数呢?

学校的学生这么多,我们不可能挨个统计吧?这时候我们需要用到概率统计的思想,也就是抽样,根据样本估算总体。假设我们随机抽到了 200 个人(也就是 200 个身高的样本数据,为了方便表示,下面“人”的意思就是对应的身高)。然后统计抽样这 200 个人的身高。根据这 200 个人的身高估计均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2

用数学的语言来说就是:为了统计学校学生的身高分布,我们独立地按照概率密度 p ( x ∣ θ ) p(x|\theta) p(xθ) 抽取了 200 个(身高),组成样本集 X = x 1 , x 2 , . . . x N X=x_1,x_2,...x_N X=x1,x2,...xN(其中 x i x_i xi 表示抽到的第 i i i 个人的身高,这里 N 就是 200,表示样本个数),我们想通过样本集 X 来估计出总体的未知参数 θ \theta θ 。这里概率密度 p ( x ∣ θ ) p(x|\theta) p(xθ) 服从高斯分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) ,其中的未知参数是 θ = [ μ , σ ] T \theta=[\mu,\sigma]^T θ=[μ,σ]T

那么问题来了怎样估算参数 θ \theta θ 呢?

1.2 估算参数

我们先回答几个小问题:

问题一:抽到这 200 个人的概率是多少呢?

由于每个样本都是独立地从 p ( x ∣ θ ) p(x|\theta) p(xθ) 中抽取的,换句话说这 200 个学生随便捉的,他们之间是没有关系的,即他们之间是相互独立的。假如抽到学生 A(的身高)的概率是 p ( x A ∣ θ ) p(x_A|\theta) p(xAθ) ,抽到学生B的概率是 p ( x B ∣ θ ) p(x_B|\theta) p(xBθ) ,那么同时抽到男生 A 和男生 B 的概率是 p ( x A ∣ θ ) × p ( x B ∣ θ ) p(x_A|\theta)\times p(x_B|\theta) p(xAθ)×p(xBθ) ,同理,我同时抽到这 200 个学生的概率就是他们各自概率的乘积了,即为他们的联合概率,用下式表示:
L ( θ ) = L ( x 1 , x 2 , . . . , x n ; θ ) = ∏ i = 1 n p ( x i ∣ θ ) , θ ∈ Θ L(\theta)=L(x_1,x_2,...,x_n;\theta)=\prod_{i=1}^np(x_i|\theta),\quad\theta \in \Theta L(θ)=L(x1,x2,...,xn;θ)=i=1np(xiθ),θΘ

n 为抽取的样本的个数,本例中 n = 200 n=200 n=200 ,这个概率反映了,在概率密度函数的参数是 θ \theta θ 时,得到 X 这组样本的概率。上式中等式右侧只有 θ \theta θ 是未知数,所以 L 是 θ \theta θ 的函数。

这个函数反映的是在不同的参数 θ \theta θ 取值下,取得当前这个样本集的可能性,因此称为参数 θ \theta θ 相对于样本集 X 的似然函数(likelihood function),记为 L ( θ ) L(\theta) L(θ)

对 L 取对数,将其变成连加的,称为对数似然函数,如下式:
H ( θ ) = l n L ( θ ) = l n ∏ i = 1 n p ( x i ∣ θ ) = ∑ i = 1 n l n p ( x i ∣ θ ) H(\theta)=lnL(\theta)=ln\prod_{i=1}^np(x_i|\theta)=\sum_{i=1}^nlnp(x_i|\theta) H(θ)=lnL(θ)=lni=1np(xiθ)=i=1nlnp(xiθ)

Q:这里为什么要取对数?
取对数之后累积变为累和,求导更加方便
概率累积会出现数值非常小的情况,比如1e-30,由于计算机的精度是有限的,无法识别这一类数据,取对数之后,更易于计算机的识别(1e-30以10为底取对数后便得到-30)。

问题二:学校那么多学生,为什么就恰好抽到了这 200 个人 ( 身高) 呢?

在学校那么学生中,我一抽就抽到这 200 个学生(身高),而不是其他人,那是不是表示在整个学校中,这 200 个人(的身高)出现的概率极大啊,也就是其对应的似然函数 L ( θ ) L(\theta) L(θ) 极大,即
θ ^ = a r g m a x   L ( θ ) \hat \theta=argmax\ L(\theta) θ^=argmax L(θ)

θ ^ \hat \theta θ^这个叫做 θ \theta θ 的极大似然估计量,即为我们所求的值。

问题三:那么怎么极大似然函数?

L ( θ ) L(\theta) L(θ) 对所有参数的偏导数,然后让这些偏导数为 0,假设有 n 个参数,就有 n 个方程组成的方程组,那么方程组的解就是似然函数的极值点了,从而得到对应的 θ \theta θ 了。

1.3 极大似然估计总结

极大似然估计你可以把它看作是一个反推。多数情况下我们是根据已知条件来推算结果,而极大似然估计是已经知道了结果,然后寻求使该结果出现的可能性极大的条件,以此作为估计值。

比如说,

假如一个学校的学生男女比例为 9:1 (条件),那么你可以推出,你在这个学校里更大可能性遇到的是男生 (结果);
假如你不知道那女比例,你走在路上,碰到100个人,发现男生就有90个 (结果),这时候你可以推断这个学校的男女比例更有可能为 9:1 (条件),这就是极大似然估计。

极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,通过若干次试验,观察其结果,利用结果推出参数的大概值。

极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率极大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

1.4 求极大似然函数估计值的一般步骤:

(1)写出似然函数;

(2)对似然函数取对数,并整理;

(3)求导数,令导数为 0,得到似然方程;

(4)解似然方程,得到的参数。

1.5 极大似然函数的应用

大佬的博客

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值