严格证明Hopfield神经网络的稳定性

研究如下的Hopfield神经网络
C i d x i ( t ) d t = − 1 R x i ( t ) + ∑ j = 1 n T i j g j ( x j ( t ) ) + I i ,    ( i = 1 , 2 , ⋯   , n ) (1) C_{i} \frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}=-\frac{1}{R} x_{i}(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(t)\right)+I_{i},\;(i=1,2, \cdots, n) \tag{1} Cidtdxi(t)=R1xi(t)+j=1nTijgj(xj(t))+Ii,(i=1,2,,n)(1)

其中 T = [ T i j ] n × n T=[T_{ij}]_{n×n} T=[Tij]n×n 是网络连接权系数矩阵, C i > 0 , R i > 0 C_i>0,R_i>0 Ci>0,Ri>0 I i I_i Ii 为常数, g i ( ⋅ ) g_i(\cdot) gi() 为可微的严格单调上升的有界函数,且 lim ⁡ l → + ∞ g i ( s ) = ± 1 \lim\limits_{l\rightarrow +\infty}g_i(s)=\pm1 l+limgi(s)=±1

我们称 ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) (x_1^*,x_2^*,...,x_n^*) (x1,x2,...,xn) 为网络(1)的平衡态,若 ( x 1 ∗ , x 2 ∗ , . . . , x n ∗ ) (x_1^*,x_2^*,...,x_n^*) (x1,x2,...,xn) 满足:
− 1 R x i ∗ ( t ) + ∑ j = 1 n T i j g j ( x j ∗ ( t ) ) + I i = 0 ,    ( i = 1 , 2 , ⋯   , n ) -\frac{1}{R} x_{i}^*(t)+\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}^*(t)\right)+I_{i}=0,\;(i=1,2, \cdots, n) R1xi(t)+j=1nTijgj(xj(t))+Ii=0,(i=1,2,,n)

证明

定理2. 若连接权系数矩阵T是对称的,则网络(1)是稳定的.
证明. 我们先证明网络的一切解有界.由式(1)有
x i ( t ) = x i ( 0 ) e − 1 C i R i + 1 C i ∫ 0 t e − 1 C i R i ( t − s ) ( ∑ j = 1 n T i j g j ( x j ( s ) ) + I i ) d s x_{i}(t)=x_{i}(0) \mathrm{e}^{-\frac{1}{C_{i} R_{i}}}+\frac{1}{C_{i}} \int_{0}^{t} \mathrm{e}^{-\frac{1}{C_{i} R_{i}}(t-s)}\left(\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(s)\right)+I_{i}\right) \mathrm{d} s xi(t)=xi(0)eCiRi1+Ci10teCiRi1(ts)(j=1nTijgj(xj(s))+Ii)ds

于是,对于一切 t ≥ 0 t\ge0 t0
∣ x i ( t ) ∣ ⩽ ∣ x i ( 0 ) ∣ e − 1 C i R i + 1 C i ∫ 0 t e − 1 C i R i ( t − s ) ∣ ∑ j = 1 n T i j g j ( x j ( s ) ) + I i ∣ d s ⩽ ∣ x i ( 0 ) ∣ e − 1 C i R i + R i ( ∑ j = 1 n ∣ T i j ∣ + I i ) ⩽ ∣ x i ( 0 ) ∣ + R i ( ∑ j = 1 n ∣ T i j ∣ + I i ) , ( i = 1 , 2 , ⋯   , n ) \begin{aligned} \left|x_{i}(t)\right| & \leqslant\left|x_{i}(0)\right| \mathrm{e}^{-\frac{1}{C_{i} R_{i}}}+\frac{1}{C_{i}} \int_{0}^{t} \mathrm{e}^{-\frac{1}{C_{i} R_{i}}(t-s)}\left|\sum_{j=1}^{n} T_{i j} g_{j}\left(x_{j}(s)\right)+I_{i}\right| \mathrm{d} s \\ & \leqslant\left|x_{i}(0)\right| \mathrm{e}^{-\frac{1}{C_{i} R_{i}} }+R_{i}\left(\sum_{j=1}^{n}\left|T_{i j}\right|+I_{i}\right) \\ & \leqslant\left|x_{i}(0)\right|+R_{i}\left(\sum_{j=1}^{n}\left|T_{i j}\right|+I_{i}\right),(i=1,2, \cdots, n) \end{aligned} xi(t)xi(0)eCiRi1+Ci10teCiRi1(ts)j=1nTijgj(xj(s))+Iidsxi(0)eCiRi1+Ri(j=1nTij+Ii)xi(0)+Ri(j=1nTij+Ii),(i=1,2,,n)

构造Hopfield能量函数
E ( x ) = − 1 2 ∑ i = 1 n ∑ j = 1 n T i j v i v j − ∑ i = 1 n I i v i + ∑ i = 1 n 1 R i ∫ 0 v i g i − 1 ( θ ) d θ E(x)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{i j} v_{i} v_{j}-\sum_{i=1}^{n} I_{i} v_{i}+\sum_{i=1}^{n} \frac{1}{R_{i}} \int_{0}^{v_{i}} g_{i}^{-1}(\theta) \mathrm{d} \theta E(x)=21i=1nj=1nTijvivji=1nIivi+i=1nRi10vigi1(θ)dθ

其中 v i = g i ( x i ) v_i=g_i(x_i) vi=gi(xi). 计算函数E沿着网络(1)的轨线的导数
d E ( x ( t ) ) d t ∣ ( 1 ) = − 1 2 ∑ i = 1 n ∑ j = 1 n T i j ( d v i ( t ) d t v j ( t ) + v i ( t ) d v j ( t ) d t ) − ∑ i = 1 n ( I i + 1 R i x i ( t ) ) d v i ( t ) d t = − ∑ i = 1 n d v i ( t ) d t ( − 1 R i x i ( t ) + ∑ j = 1 n T i j g j ( x j ( t ) ) + I i ) = − ∑ i = 1 n C i d g i ( x i ( t ) ) d x i ( t ) ( d x i ( t ) d t ) 2 ⩽ 0 \begin{aligned} \frac{\mathrm{d} E\left(x(t)\right)}{\mathrm{d} t} &\left.\right|_{(1)}=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} T_{i j}\left(\frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t} v_{j}(t)+v_{i}(t) \frac{\mathrm{d} v_{j}(t)}{\mathrm{d} t}\right) \\ &-\sum_{i=1}^{n}\left(I_{i}+\frac{1}{R_{i}} x_{i}(t)\right) \frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t} \\ =&-\sum_{i=1}^{n} \frac{\mathrm{d} v_{i}(t)}{\mathrm{d} t}\left(-\frac{1}{R_{i}} x_{i}(t)+\sum_{j=1}^{n} T_{ij} g_{j}\left(x_{j}(t)\right)+I_{i}\right) \\ =&-\sum_{i=1}^{n} C_{i} \frac{\mathrm{d} g_{i}\left(x_{i}(t)\right)}{\mathrm{d} x_{i}(t)}\left(\frac{\mathrm{d} x_{i}(t)}{\mathrm{d} t}\right)^{2} \\ \leqslant & 0 \end{aligned} dtdE(x(t))==(1)=21i=1nj=1nTij(dtdvi(t)vj(t)+vi(t)dtdvj(t))i=1n(Ii+Ri1xi(t))dtdvi(t)i=1ndtdvi(t)(Ri1xi(t)+j=1nTijgj(xj(t))+Ii)i=1nCidxi(t)dgi(xi(t))(dtdxi(t))20

显然,
d E ( x ( t ) ) d t ∣ ( 1 ) = 0 , 当 且 仅 当 d x ( t ) d t = 0 \left.\frac{dE\left(x(t)\right)}{dt}\right|_{(1)}=0,\quad 当且仅当\frac{dx(t)}{dt}=0 dtdE(x(t))(1)=0,dtdx(t)=0

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值