常用矩阵求导公式,逆矩阵求导

常用矩阵求导

  • ∂ β x ∂ x = β \frac{\partial \beta \mathbf{x}}{\partial \mathbf{x}}=\beta xβx=β

  • ∂ x T a ∂ x = ∂ a T x ∂ x = a \frac{\partial \mathbf{x}^T\mathbf{a}}{\partial \mathbf{x}}=\frac{\partial \mathbf{a}^T\mathbf{x}}{\partial \mathbf{x}}=\mathbf{a} xxTa=xaTx=a
    证明:
    在这里插入图片描述

  • ∂ x T x ∂ x = 2 x \frac{\partial \mathbf{x}^T\mathbf{x}}{\partial \mathbf{x}}=2\mathbf{x} xxTx=2x

  • ∂ x T A x ∂ x = ( A + A T ) x \frac{\partial \mathbf{x}^TA\mathbf{x}}{\partial \mathbf{x}}=(A+A^T)\mathbf{x} xxTAx=(A+AT)x

  • t r ( a ) = a tr(a)=a tr(a)=a

  • t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)

  • t r ( A B C ) = t r ( C A B ) = t r ( B C A ) tr(ABC)=tr(CAB)=tr(BCA) tr(ABC)=tr(CAB)=tr(BCA)

  • t r ( A ) = t r ( A T ) tr(A)=tr(A^T) tr(A)=tr(AT)

  • ∂ t r ( A B ) ∂ A = B T \frac{\partial tr(AB)}{\partial A}=B^T Atr(AB)=BT

  • ∂ t r ( A B A T C ) ∂ A = C A B + C T A B T \frac{\partial tr(ABA^TC)}{\partial A}=CAB+C^TAB^T Atr(ABATC)=CAB+CTABT

逆矩阵求导

两种方法:

  • 直接法
    d X − 1 d x = lim ⁡ Δ X → 0 ( X + Δ X ) − 1 − X − 1 Δ x = lim ⁡ Δ X → 0 ( X + Δ X ) − 1 X X − 1 − ( X + Δ X ) − 1 ( X + Δ X ) X − 1 Δ x = lim ⁡ Δ X → 0 ( X + Δ X ) − 1 X − ( X + Δ X ) Δ x X − 1 = lim ⁡ Δ X → 0 ( X + Δ X ) − 1 − Δ X Δ x X − 1 = − ( X + Δ X ) − 1 lim ⁡ Δ X → 0 Δ X Δ x X − 1 = − X − 1 lim ⁡ Δ X → 0 Δ X Δ x X − 1 = − X − 1 d X d x X − 1 \begin{align}\frac{d X^{-1}}{dx}&=\lim_{\Delta X\rightarrow 0}\frac{(X+\Delta X)^{-1}-X^{-1}}{\Delta x}\\ &=\lim_{\Delta X\rightarrow 0}\frac{(X+\Delta X)^{-1}XX^{-1}-(X+\Delta X)^{-1}(X+\Delta X)X^{-1}}{\Delta x}\\ &=\lim_{\Delta X\rightarrow 0}(X+\Delta X)^{-1}\frac{X-(X+\Delta X)}{\Delta x}X^{-1}\\ &=\lim_{\Delta X\rightarrow 0}(X+\Delta X)^{-1}\frac{-\Delta X}{\Delta x}X^{-1}\\ &=-(X+\Delta X)^{-1}\lim_{\Delta X\rightarrow 0}\frac{\Delta X}{\Delta x}X^{-1}\\ &=-X^{-1}\lim_{\Delta X\rightarrow 0}\frac{\Delta X}{\Delta x}X^{-1}\\ &=-X^{-1}\frac{d X}{d x}X^{-1}\\ \end{align} dxdX1=ΔX0limΔx(X+ΔX)1X1=ΔX0limΔx(X+ΔX)1XX1(X+ΔX)1(X+ΔX)X1=ΔX0lim(X+ΔX)1ΔxX(X+ΔX)X1=ΔX0lim(X+ΔX)1ΔxΔXX1=(X+ΔX)1ΔX0limΔxΔXX1=X1ΔX0limΔxΔXX1=X1dxdXX1

  • 利用 0 = ( X X − 1 ) ′ 0=(XX^{-1})^{'} 0=(XX1)
    0 = ( X X − 1 ) ′ = X ′ X − 1 + X ( X − 1 ) ′ \begin{align}0&=(XX^{-1})^{'}=X^{'}X^{-1}+X(X^{-1})^{'} \end{align} 0=(XX1)=XX1+X(X1)
    Then,
    ⇒ ( X − 1 ) ′ = − X − 1 X ′ X − 1 \Rightarrow (X^{-1})^{'}=-X^{-1}X^{'}X^{-1} (X1)=X1XX1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值