1.完全背包
- 代码随想录讲解
完全背包和01背包的区别在于每个物品可以无限去拿
void complet_bag_problem() {
vector<int> weight = { 1, 3, 4 };
vector<int> value = { 15, 20, 30 };
int bagSize = 4;
// 1. 确定dp数组
vector<int> dp(bagSize + 1, 0);
// 2. 先遍历物品再遍历背包
for (int i = 0; i < weight.size(); i++) {
for (int j = weight[i]; j <= bagSize; j++) {
dp[j] = max(dp[j], dp[j-weight[i]]+value[i]);
}
}
cout << dp[bagSize] << endl;
}
2.零钱兑换 (组合问题)
class Solution {
public:
int change(int amount, vector<int>& coins) {
// 1. 属于完全背包的不同组合问题
// 2. dp数组初始化为0即可
vector<int> dp(amount+1, 0);
dp[0] = 1;
// 3.遍历逻辑 dp[j] = max(dp[j], dp[j-coins[i]]+1);
for(int i=0; i<coins.size(); i++){
for(int j=coins[i]; j<=amount; j++){
// 第一遍做错的
// dp[j] = max(dp[j], dp[j-coins[i]]+1);
dp[j] += dp[j-coins[i]];
}
}
return dp[amount];
}
};
3. 组合总和 (不同排列的组合 属于 不同的结果)
给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
外层背包,内层元素的循环顺序
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
// 排列顺序不同的组设被视为 不同的结果
// 不同排列顺序属于不同结果的话,就是用外层背包 内层元素的遍历方式
vector<int> dp(target+1, 0);
dp[0] = 1;
for(int i=0; i<=target; i++){
for(int j=0; j<nums.size(); j++){
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};