第41天-DP-第九章● 完全背包 ● 518. 零钱兑换 II ● 377. 组合总和 Ⅳ

文章介绍了三种使用动态规划方法解决的计算问题:1)完全背包问题,通过遍历物品和背包大小找到最大价值;2)零钱兑换,计算达成特定金额的组合数;3)组合总和,寻找不同整数组合成目标值的方案数。每种问题都给出了相应的LeetCode链接和代码实现。
摘要由CSDN通过智能技术生成

1.完全背包

- 代码随想录讲解
完全背包和01背包的区别在于每个物品可以无限去拿

void complet_bag_problem() {
	vector<int> weight = { 1, 3, 4 };
	vector<int> value = { 15, 20, 30 };

	int bagSize = 4;

	// 1. 确定dp数组
	vector<int> dp(bagSize + 1, 0);

	// 2. 先遍历物品再遍历背包
	for (int i = 0; i < weight.size(); i++) {
		for (int j = weight[i]; j <= bagSize; j++) {
			dp[j] = max(dp[j], dp[j-weight[i]]+value[i]);
		}
	}

	cout << dp[bagSize] << endl;

}

2.零钱兑换 (组合问题)

- LeetCode链接

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        // 1. 属于完全背包的不同组合问题
        // 2. dp数组初始化为0即可
        vector<int> dp(amount+1, 0);
        dp[0] = 1;
        
        // 3.遍历逻辑 dp[j] = max(dp[j], dp[j-coins[i]]+1);        
        for(int i=0; i<coins.size(); i++){
            for(int j=coins[i]; j<=amount; j++){
                // 第一遍做错的
                // dp[j] = max(dp[j], dp[j-coins[i]]+1);
                dp[j] += dp[j-coins[i]];
            }
        }

        return dp[amount];
    }
};

3. 组合总和 (不同排列的组合 属于 不同的结果)

- LeetCode链接

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
外层背包,内层元素的循环顺序

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        // 排列顺序不同的组设被视为 不同的结果
        // 不同排列顺序属于不同结果的话,就是用外层背包 内层元素的遍历方式

        vector<int> dp(target+1, 0);
        dp[0] = 1;

        for(int i=0; i<=target; i++){
            for(int j=0; j<nums.size(); j++){
                if (i - nums[j] >= 0  && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }

        return dp[target];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值