Tensorflow5
卷积
在实际项目中,输入神经网络的是具有高分辨率的彩色图片,使得送入全连接网络的输入特征数过多,随着隐藏层数的增加,网络规模的扩大,待优化参数过多,很容易使模型过拟合,为了减少待优化参数,引入卷积对原始图片进行特征提取。
卷积核的通道数必须与输入特征图的通道数一致,因为想要对应点匹配,
输入特征图的深度(channel)决定了当前层卷积核的深度
当前层卷积核的个数决定了输出特征图的深度
CNN
感受野
当边长大于10时,两层33比一层55要好
保持输入输出尺寸不变——全零填充
计算公式
TF描述
批标准化
神经网络对0附近的数据更敏感,但随着网络层数的增加,特征数据会出现偏离0均值的情况。
常用在卷积操作和激活操作之间。
池化
舍弃(Dropout)
CNN小结
CBAPD