Tensorflow5

Tensorflow5

卷积

	在实际项目中,输入神经网络的是具有高分辨率的彩色图片,使得送入全连接网络的输入特征数过多,随着隐藏层数的增加,网络规模的扩大,待优化参数过多,很容易使模型过拟合,为了减少待优化参数,引入卷积对原始图片进行特征提取。

1
2
卷积核的通道数必须与输入特征图的通道数一致,因为想要对应点匹配,
输入特征图的深度(channel)决定了当前层卷积核的深度
当前层卷积核的个数决定了输出特征图的深度

在这里插入图片描述

CNN

5.2

感受野

在这里插入图片描述
当边长大于10时,两层33比一层55要好

保持输入输出尺寸不变——全零填充
在这里插入图片描述
计算公式
在这里插入图片描述
TF描述
在这里插入图片描述


批标准化

神经网络对0附近的数据更敏感,但随着网络层数的增加,特征数据会出现偏离0均值的情况。
常用在卷积操作和激活操作之间。
在这里插入图片描述


池化

在这里插入图片描述
在这里插入图片描述

舍弃(Dropout)

在这里插入图片描述

CNN小结

CBAPD
在这里插入图片描述

经典CNN

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值