每日定时更新,考研资料免费送,有意者联系下方微信
一 函数、极限、连续
1.1函数
1.1.1有界性
有界性定义:
设函数在区间
上有定义,如果
,使对
都有
,则称
在区间
上有界;若不存在这样的
,则称
在区间
上无界.
考点1 有界性的判定
方法1:函数有界性定义
方法2:函数有界的充要条件是函数既有上界也有下界
方法3:在某点函数极限趋近于无穷大
方法4:常用有界函数
1.1.2单调性
单调性定义:
设函数在区间
上有定义,如果对于
且
时,恒有
则称函数在区间
上单调增加(减少)的
考点2:函数单调性的判断
方法1:根据单调性定义判断
方法2:图像法
方法3:对于且
,
,
在区间
上单调增加(减少)
1.1.3奇偶性
奇偶性的运算性质
(1)奇函数的代数和仍是奇函数;偶函数代数和仍为偶函数。
(2)偶数个奇函数或者偶函数的乘积为偶函数;奇数个奇函数乘积为奇函数。
(3)一奇一偶乘积为奇函数
奇偶性的其他性质
奇函数:
①,奇函数图像和定义域关于原点对称
②奇函数在
处有意义时(即定义域包含0时),有
③奇函数的最大值与最小值之和为
。
④重要结论:已知函数为奇函数,
为常数,
,则有
其中
表示最大值,
表示最小值
偶函数:
①偶函数图像关于
轴对称偶函数定义域关于原点对称
②定义域关于原点对称的非零常函数是偶函数。()
③若 为偶函数,则
1.1.4反函数
反函数定义:
反函数求法:
求函数的反函数:
1、判断函数是否是一一对应关系,如果不一一对应则无反函数。
2、将原函数中,解出
,则反函数即为
。
3、定义域值域互换,图像关于对称。
4、牢记初等函数(特别是三角函数、幂指数)的反函数。
1.1.5 初等函数的性质与图像
1.幂函数
2.指数函数以及对数函数
3.三角函数以及反三角函数
1.2极限
1.2.1极限定义以及左右极限
1.2.2 函数极限的性质
考点:极限局部保号性的应用
保号性首先要求极限存在且极限不等于0,再由极限的正负决定局部范围内f(x)的正负
1.2.3极限的四则运算
1.2.4极限存在准则——夹逼准则
考点:利用夹逼准则求极限
数列极限进行适当的缩放,放大缩小的极限要存在且相等