考研数学考点分析1

每日定时更新,考研资料免费送,有意者联系下方微信

一 函数、极限、连续

1.1函数

1.1.1有界性

有界性定义:

      设函数f(x)在区间I上有定义,如果\exists M> 0,使对\forall x\in I都有\left | f(x) \right |\leq M,则称f(x)在区间I上有界;若不存在这样的M> 0,则称f(x)在区间I上无界.

考点1 有界性的判定

方法1:函数有界性定义

方法2:函数有界的充要条件是函数既有上界也有下界

方法3:在某点函数极限趋近于无穷大

方法4:常用有界函数

\left | sinx \right |\leq 1,\left | cosx \right |\leq 1,x\in (-\infty ,+\infty)

\left | arcsinx \right |\leq \frac{\pi }{2},x\in \left [ -1,1 \right ] ;0\leq arccosx\leq \pi,x\in \left [ -1,1 \right ]\left | arctanx \right |< \frac{\pi }{2},x\in (-\infty ,+\infty );0< arccotx< \pi ,x\in (-\infty ,+\infty )

1.1.2单调性

单调性定义:

设函数f(x)在区间I上有定义,如果对于\forall x_{1},x_{2}\in Ix_{1}< x_{2}时,恒有f(x_{1})< f(x_{2})(orf(x_{1})> f(x_{2}) )

则称函数f(x)在区间I上单调增加(减少)的

考点2:函数单调性的判断

方法1:根据单调性定义判断

方法2:图像法

方法3:对于\forall x_{1}, x_{1}x_{1}< x_{2}f(x_{1})-f(x_{2})< 0(> 0),f(x)在区间I上单调增加(减少)

1.1.3奇偶性

奇偶性的运算性质

(1)奇函数的代数和仍是奇函数;偶函数代数和仍为偶函数。

(2)偶数个奇函数或者偶函数的乘积为偶函数;奇数个奇函数乘积为奇函数。

(3)一奇一偶乘积为奇函数

奇偶性的其他性质

奇函数:

f(-x)=-f(x),奇函数图像和定义域关于原点对称

②奇函数f( x)x=0处有意义时(即定义域包含0时),有f(0)=0

③奇函数f( x)的最大值与最小值之和为0

④重要结论:已知函数g(x)为奇函数,a为常数,f(x)=g(x)+a,则有 M+m=f(x)+f(-x)=f(x_{0})+f(-x_{0})=2a=2f(0) 其中M表示最大值,m表示最小值

偶函数:

f(-x)=f(x)=f(\left | x \right |)偶函数图像关于y轴对称偶函数定义域关于原点对称

②定义域关于原点对称的非零常函数是偶函数。(eg:f(x)=1

③若f(x)=a^{2}+bx+c (a\neq 0) 为偶函数,则b=0

1.1.4反函数

反函数定义:

反函数求法:

求函数的反函数:

1、判断函数是否是一一对应关系,如果不一一对应则无反函数。

2、将原函数中y=f(x),解出x=\varphi (y),则反函数即为y= \varphi (x)

3、定义域值域互换,图像关于y=x对称。

4、牢记初等函数(特别是三角函数、幂指数)的反函数。

1.1.5 初等函数的性质与图像

1.幂函数

2.指数函数以及对数函数

3.三角函数以及反三角函数

1.2极限

1.2.1极限定义以及左右极限

1.2.2 函数极限的性质

考点:极限局部保号性的应用          

保号性首先要求极限存在且极限不等于0,再由极限的正负决定局部范围内f(x)的正负

1.2.3极限的四则运算

1.2.4极限存在准则——夹逼准则

考点:利用夹逼准则求极限

数列极限进行适当的缩放,放大缩小的极限要存在且相等

1.2.5极限存在准则——单调有界准则

1.2.6 两个重要极限

1.2.7无穷小和无穷大及其性质

1.2.8连续性与间断点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值