列转行:
维表转换为一维
一,stack 将数据的列“旋转”为行
stack函数:pandas.DataFrame.stack(self, level=-1, dropna=True)
最外层是原先的行索引,每个行索引对应一行数据,列名与数据值一一对应。
a、对于普通的DataFrame而言,直接列索引转换到最内层行索引,生一个Series对象.
b、对于层次化索引的DataFrame而言,可以将指定的索引层转换到行上,默认是将最内层的列索引转换到最内层行.
二,unstack 将数据的行“旋转”为列
unstack函数:pandas.DataFrame.unstack(self, level=-1, fill_value=None)。
最外层的是原先的列名,一个列名对应一列数据,在其中,原先的行号与数据值一一对应
a、对于普通的DataFrame而言,直接将列索引转换到行索引的最外层索引,生成一个Series对象
b、对于层次化索引的DataFrame而言,和stack函数类似,似乎把两层索引当作一个整体,当level为列表时报错
三,melt函数:pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=‘value’, col_level=None)
常用与将宽数据变成长数据。
结论:从上述结果可以看出,id_vars可以理解为结果需要保留的原始列,value_vars可以理解为需需要列转行的列名;v