dateframe的行列转换与转置。

本文介绍了如何在Pandas中进行DataFrame的行列转换,包括使用stack将列转为行,unstack将行转为列,以及melt函数将宽数据转成长数据。此外,还提到了利用df.T,df.stack().unstack(0)和df.unstack()实现转置的三种方法。详细教程参考链接已给出。
摘要由CSDN通过智能技术生成

列转行:
维表转换为一维
一,stack 将数据的列“旋转”为行
stack函数:pandas.DataFrame.stack(self, level=-1, dropna=True)

  最外层是原先的行索引,每个行索引对应一行数据,列名与数据值一一对应。
 a、对于普通的DataFrame而言,直接列索引转换到最内层行索引,生一个Series对象.
 
 b、对于层次化索引的DataFrame而言,可以将指定的索引层转换到行上,默认是将最内层的列索引转换到最内层行.

二,unstack 将数据的行“旋转”为列
unstack函数:pandas.DataFrame.unstack(self, level=-1, fill_value=None)。
最外层的是原先的列名,一个列名对应一列数据,在其中,原先的行号与数据值一一对应

a、对于普通的DataFrame而言,直接将列索引转换到行索引的最外层索引,生成一个Series对象
b、对于层次化索引的DataFrame而言,和stack函数类似,似乎把两层索引当作一个整体,当level为列表时报错

三,melt函数:pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=‘value’, col_level=None)
常用与将宽数据变成长数据。

结论:从上述结果可以看出,id_vars可以理解为结果需要保留的原始列,value_vars可以理解为需需要列转行的列名;v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值