吴恩达机器学习【Lecture 3】

多变量线性回归

Multiple features

在这里插入图片描述

Gradient descent for multiple variables多元梯度下降

与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即: J ( θ 0 , θ 1 . . . θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} J(θ0,θ1...θn)=2m1i=1m(hθ(x(i))y(i))2

其中: h θ ( x ) = θ T X = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)=\theta^{T}X={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0+θ1x1+θ2x2+...+θnxn

我们的目标和单变量线性回归问题中一样,是要找出使得代价函数最小的一系列参数。 多变量线性回归的批量梯度下降算法为:

即:

求导数后得到:

n > = 1 n>=1 n>=1时, θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) {{\theta }{0}}:={{\theta }{0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x{0}^{(i)} θ0:=θ0am1i=1m(hθ(x(i))y(i))x0(i)

θ 1 : = θ 1 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 1 ( i ) {{\theta }{1}}:={{\theta }{1}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x{1}^{(i)} θ1:=θ1am1i=1m(hθ(x(i))y(i))x1(i)

θ 2 : = θ 2 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 2 ( i ) {{\theta }{2}}:={{\theta }{2}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x{2}^{(i)} θ2:=θ2am1i=1m(hθ(x(i))y(i))x2(i)

我们开始随机选择一系列的参数值,计算所有的预测结果后,再给所有的参数一个新的值,如此循环直到收敛。

计算代价函数 J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}} J(θ)=2m1i=1m(hθ(x(i))y(i))2 其中: h θ ( x ) = θ T X = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n {h_{\theta}}\left( x \right)={\theta^{T}}X={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn

python代码示例:

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))

Gradient descent in practice I:Feature Scaling多元梯度下降演练:特征缩放

在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。

以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。

解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如图:
在这里插入图片描述特征范围:使每一个特征范围大概在(-1,1)之间,但也不仅仅局限于这个范围,一般来说,(-3,3)(-1/3,1/3)之间都可以,但不能太大或者太小。
在这里插入图片描述
在这里插入图片描述
最简单的方法是令: x n = x n − μ n s n {{x}_{n}}=\frac{{{x}_{n}}-{{\mu}_{n}}}{{{s}_{n}}} xn=snxnμn,其中 μ n {\mu_{n}} μn是平均值, s n {s_{n}} sn是标准差。

Gradient descent in practice II:Learning rate多元梯度下降演练:学习率

梯度下降算法收敛所需要的迭代次数根据模型的不同而不同,我们不能提前预知,我们可以绘制迭代次数和代价函数的图表来观测算法在何时趋于收敛。

也有一些自动测试是否收敛的方法,例如将代价函数的变化值与某个阀值(例如0.001)进行比较,但通常看上面这样的图表更好。
在这里插入图片描述梯度下降算法的每次迭代受到学习率的影响,如果学习率 α \alpha α过小,则达到收敛所需的迭代次数会非常高;如果学习率 α \alpha α过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

下图是迭代次数与代价函数的图表,反映出 α \alpha α取值过大,应该取小 a a a的值。
在这里插入图片描述通常可以考虑尝试些学习率:

α = 0.01 , 0.03 , 0.1 , 0.3 , 1 , 3 , 10 \alpha=0.01,0.03,0.1,0.3,1,3,10 α=0.010.030.10.31310

Features and polynomial regression特征和多项式回归

在这里插入图片描述
h θ ( x ) = θ 0 + θ 1 × f r o n t a g e + θ 2 × d e p t h h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}\times{frontage}+{\theta_{2}}\times{depth} hθ(x)=θ0+θ1×frontage+θ2×depth

x 1 = f r o n t a g e {x_{1}}=frontage x1=frontage(临街宽度), x 2 = d e p t h {x_{2}}=depth x2=depth(纵向深度), x = f r o n t a g e ∗ d e p t h = a r e a x=frontage*depth=area x=frontagedepth=area(面积),则: h θ ( x ) = θ 0 + θ 1 x {h_{\theta}}\left( x \right)={\theta_{0}}+{\theta_{1}}x hθ(x)=θ0+θ1x

线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方模型: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2} hθ(x)=θ0+θ1x1+θ2x22 或者三次方模型: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 2 + θ 3 x 3 3 h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}^2}+{\theta_{3}}{x_{3}^3} hθ(x)=θ0+θ1x1+θ2x22+θ3x33

通常我们需要先观察数据然后再决定准备尝试怎样的模型。 另外,我们可以令:
x 2 = x 2 2 , x 3 = x 3 3 {{x}_{2}}=x_{2}^{2},{{x}_{3}}=x_{3}^{3} x2=x22,x3=x33,从而将模型转化为线性回归模型。

根据函数图形特性,我们还可以使:
h θ ( x ) = θ 0 + θ 1 ( s i z e ) + θ 2 ( s i z e ) 2 {{{h}}_{\theta}}(x)={{\theta }_{0}}\text{+}{{\theta }_{1}}(size)+{{\theta}_{2}}{{(size)}^{2}} hθ(x)=θ0+θ1(size)+θ2(size)2
或者:
h θ ( x ) = θ 0 + θ 1 ( s i z e ) + θ 2 s i z e {{{h}}_{\theta}}(x)={{\theta }_{0}}\text{+}{{\theta }_{1}}(size)+{{\theta }_{2}}\sqrt{size} hθ(x)=θ0+θ1(size)+θ2size

注:如果我们采用多项式回归模型,在运行梯度下降算法前,特征缩放非常有必要。

Normal equation正规方程

正规方程是解决线性回归问题的一个比较有利的工具。

正规方程是通过求解下面的方程来找出使得代价函数最小的参数的: ∂ ∂ θ j J ( θ j ) = 0 \frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0 θjJ(θj)=0 。 假设我们的训练集特征矩阵为 X X X(包含了 x 0 = 1 {{x}_{0}}=1 x0=1)并且我们的训练集结果为向量 y y y,则利用正规方程解出向量 θ = ( X T X ) − 1 X T y \theta ={{\left( {X^T}X \right)}^{-1}}{X^{T}}y θ=(XTX)1XTy 。 设矩阵 A = X T X A={X^{T}}X A=XTX,则: ( X T X ) − 1 = A − 1 {{\left( {X^T}X \right)}^{-1}}={A^{-1}} (XTX)1=A1 以下表示数据为例

θ = ( X T X ) − 1 X T y \theta ={{\left( {X^{T}}X \right)}^{-1}}{X^{T}}y θ=(XTX)1XTy 的推导过程:

J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {h_{\theta}}\left( {x^{(i)}} \right)-{y^{(i)}} \right)}^{2}}} J(θ)=2m1i=1m(hθ(x(i))y(i))2 其中: h θ ( x ) = θ T X = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n {h_{\theta}}\left( x \right)={\theta^{T}}X={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θTX=θ0x0+θ1x1+θ2x2+...+θnxn

将向量表达形式转为矩阵表达形式,则有 J ( θ ) = 1 2 ( X θ − y ) 2 J(\theta )=\frac{1}{2}{{\left( X\theta -y\right)}^{2}} J(θ)=21(Xθy)2 ,其中 X X X m m m n n n列的矩阵( m m m为样本个数, n n n为特征个数), θ \theta θ n n n行1列的矩阵, y y y m m m行1列的矩阵,对 J ( θ ) J(\theta ) J(θ)进行如下变换

J ( θ ) = 1 2 ( X θ − y ) T ( X θ − y ) J(\theta )=\frac{1}{2}{{\left( X\theta -y\right)}^{T}}\left( X\theta -y \right) J(θ)=21(Xθy)T(Xθy)

= 1 2 ( θ T X T − y T ) ( X θ − y ) =\frac{1}{2}\left( {{\theta }^{T}}{{X}^{T}}-{{y}^{T}} \right)\left(X\theta -y \right) =21(θTXTyT)(Xθy)

= 1 2 ( θ T X T X θ − θ T X T y − y T X θ − y T y ) =\frac{1}{2}\left( {{\theta }^{T}}{{X}^{T}}X\theta -{{\theta}^{T}}{{X}^{T}}y-{{y}^{T}}X\theta -{{y}^{T}}y \right) =21(θTXTXθθTXTyyTXθyTy)

接下来对 J ( θ ) J(\theta ) J(θ)偏导,需要用到以下几个矩阵的求导法则:

d A B d B = A T \frac{dAB}{dB}={{A}^{T}} dBdAB=AT

d X T A X d X = 2 A X \frac{d{{X}^{T}}AX}{dX}=2AX dXdXTAX=2AX

所以有:

∂ J ( θ ) ∂ θ = 1 2 ( 2 X T X θ − X T y − ( y T X ) T − 0 ) \frac{\partial J\left( \theta \right)}{\partial \theta }=\frac{1}{2}\left(2{{X}^{T}}X\theta -{{X}^{T}}y -{}({{y}^{T}}X )^{T}-0 \right) θJ(θ)=21(2XTXθXTy(yTX)T0)

= 1 2 ( 2 X T X θ − X T y − X T y − 0 ) =\frac{1}{2}\left(2{{X}^{T}}X\theta -{{X}^{T}}y -{{X}^{T}}y -0 \right) =21(2XTXθXTyXTy0)

= X T X θ − X T y ={{X}^{T}}X\theta -{{X}^{T}}y =XTXθXTy

∂ J ( θ ) ∂ θ = 0 \frac{\partial J\left( \theta \right)}{\partial \theta }=0 θJ(θ)=0,

则有 θ = ( X T X ) − 1 X T y \theta ={{\left( {X^{T}}X \right)}^{-1}}{X^{T}}y θ=(XTX)1XTy

在这里插入图片描述
在这里插入图片描述
在 Octave 中,正规方程写作:

pinv(X'*X)*X'*y

注:对于那些不可逆的矩阵(通常是因为特征之间不独立,如同时包含英尺为单位的尺寸和米为单位的尺寸两个特征,也有可能是特征数量大于训练集的数量),正规方程方法是不能用的。

梯度下降正规方程
需要选择学习率 α \alpha α不需要
需要多次迭代一次运算得出
当特征数量 n n n大时也能较好适用需要计算 ( X T X ) − 1 {{\left( {{X}^{T}}X \right)}^{-1}} (XTX)1 如果特征数量n较大则运算代价大,因为矩阵逆的计算时间复杂度为 O ( n 3 ) O\left( {{n}^{3}} \right) O(n3),通常来说当 n n n小于10000 时还是可以接受的
适用于各种类型的模型只适用于线性模型,不适合逻辑回归模型等其他模型

总结一下,只要特征变量的数目并不大,标准方程是一个很好的计算参数$\theta $的替代方法。具体地说,只要特征变量数量小于一万,通常使用标准方程法,而不使用梯度下降法。

正规方程的python实现:

import numpy as np
    
 def normalEqn(X, y):
    
   theta = np.linalg.inv(X.T@X)@X.T@y   /* #X.T@X等价于X.T.dot(X) */
    
   return theta

Normal equation Noninvertibility (Optional)正规方程及不可逆性

正规方程以及它们的不可逆性

当计算 θ = ( X T X ) − 1 X T y \theta ={{\left( {X^{T}}X \right)}^{-1}}{X^{T}}y θ=(XTX)1XTy ,存在矩阵 X ′ X X'X XX的结果是不可逆的情况

在Octave里,有两个函数可以求解矩阵的逆,一个被称为pinv(),另一个是inv(),这两者之间的差异是些许计算过程上的,一个是所谓的伪逆,另一个被称为逆。使用pinv() 函数可以展现数学上的过程,这将计算出 θ \theta θ的值,即便矩阵 X ′ X X'X XX是不可逆的。
在这里插入图片描述
首先,看特征值里是否有一些多余的特征,像这些 x 1 {x_{1}} x1 x 2 {x_{2}} x2是线性相关的,互为线性函数。同时,当有一些多余的特征时,可以删除这两个重复特征里的其中一个,无须两个特征同时保留,将解决不可逆性的问题。因此,首先应该通过观察所有特征检查是否有多余的特征,如果有多余的就删除掉,直到他们不再是多余的为止,如果特征数量实在太多,就删除些 用较少的特征来反映尽可能多内容,否则考虑使用正规化方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值