自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 C++中的结构体内嵌比较函数

C++中的结构体内嵌比较函数

2023-02-19 17:24:24 856 1

原创 单调栈二三事

ps:整合所得,第一次发布在个人网站(http://zhangyihao.top/2021/05/05/dan-diao-zhan-er-san-shi/)上,欢迎来玩orz1.什么是单调栈?从名字上就听的出来,单调栈中存放的数据应该是有序的,所以单调栈也分为单调递增栈和单调递减栈单调递增栈:单调递增栈就是从栈底到栈顶数据是从大到小单调递减栈:单调递减栈就是从栈底到栈顶数据是从小到大2.模拟单调栈的数据push和pop模拟实现一个单调递增栈:现在有一组数10,3,7,4,12。从左到右依次

2021-05-05 10:58:11 173

原创 task05 模型集成

1.集成学习方法在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。下面假设构建了10折交叉验证,训练得到10个CNN模型。那么在10个CNN模型可以使用如下方式进行集成:对预测的结果的概率值进行平均,然后解码为具体字符;对预测的字符进行投票,得到最终字符。2.

2020-06-02 18:26:14 132

原创 Task4 模型训练与验证

在机器学习模型(特别是深度学习模型)的训练过程中,模型是非常容易过拟合的。深度学习模型在不断的训练过程中训练误差会逐渐降低,但测试误差的走势则不一定。在模型的训练过程中,模型只能利用训练数据来进行训练,模型并不能接触到测试集上的样本。因此模型如果将训练集学的过好,模型就会记住训练样本的细节,导致模型在测试集的泛化效果较差,这种现象称为过拟合(Overfitting)。与过拟合相对应的是欠拟合(Underfitting),即模型在训练集上的拟合效果较差。解决上述问题最好的解决方法:构建一个与测试集尽可能分

2020-05-30 11:13:45 210

原创 task03 CNN模型字符识别

1. CNN介绍卷积神经网络(简称CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。CNN每一层由众多的卷积核组成,每个卷积核对输入的像素进行卷积操作,得到下一次的输入。随着网络层的增加卷积核会逐渐扩大感受野,并缩减图像的尺寸。CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积(convolution)、池化(pooling)、非线

2020-05-26 15:46:05 364

原创 task02 Pillow、opencv图像读取与一般操作

A. PIL模块参考链接:https://blog.csdn.net/FlashKoala/article/details/906494641.Image类Image实例有5个属性:format : 返回图像格式(PNG,JPG,…),如果图像不是从文件读取的,则值Nonemode : 返回图像的模式,常用模式有:L (luminance) 灰度图像,8位像素,表示黑和白RGB 3x8位像素,为真彩色图像RGBA 4x8位像素,有透明通道的真彩色CMYK 4x8位像素,颜色分离,出版图

2020-05-22 19:43:28 371

原创 Datawhale 零基础入门CV赛事-Task1 赛题理解

Datawhale 零基础入门CV赛事-Task1 赛题理解1.赛题数据的处理数据集与数据标签该数据来自收集的SVHN街道字符,并进行了匿名采样处理。训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括4W张照片,测试集B包括4W张照片。 数据标签:FieldDescriptiontop左上角坐标Xheight字符高度left左上角最表Ywidth字符宽度

2020-05-19 14:54:55 194

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除