Datawhale 零基础入门CV赛事-Task1 赛题理解

Datawhale 零基础入门CV赛事-Task1 赛题理解

1.赛题数据的处理

数据集与数据标签

该数据来自收集的SVHN街道字符,并进行了匿名采样处理。
训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括4W张照片,测试集B包括4W张照片。

		数据标签:
FieldDescription
top左上角坐标X
height字符高度
left左上角最表Y
width字符宽度
label字符编码

描述

评测指标

选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标。任何一个字符错误都为错误,最终评测指标结果越大越好,具体计算公式如下:
Score=编码识别正确的数量/测试集图片数量

数据读取

json标签读取(需跟换相应路径)

 import json
train_json = json.load(open('../input/train.json'))

# 数据标注处理
def parse_json(d):
    arr = np.array([
        d['top'], d['height'], d['left'],  d['width'], d['label']
    ])
    arr = arr.astype(int)
    return arr

img = cv2.imread('../input/train/000000.png')
arr = parse_json(train_json['000000.png'])

plt.figure(figsize=(10, 10))
plt.subplot(1, arr.shape[1]+1, 1)
plt.imshow(img)
plt.xticks([]); plt.yticks([])

for idx in range(arr.shape[1]):
    plt.subplot(1, arr.shape[1]+1, idx+2)
    plt.imshow(img[arr[0, idx]:arr[0, idx]+arr[1, idx],arr[2, idx]:arr[2, idx]+arr[3, idx]])
    plt.title(arr[4, idx])
    plt.xticks([]); plt.yticks([])

我用了000001.png,结果:

简单入门思路:定长字符识别

可以将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。
因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。
经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。
此种思路需要参赛选手构建字符检测模型,对测试集中的字符进行识别。选手可以参考物体检测模型SSD或者YOLO来完成。
关于YOLO 参考:https://blog.csdn.net/u014380165/article/details/72616238?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158982337219724846437367%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=158982337219724846437367&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2blogfirst_rank_v2~rank_v25-2-72616238.nonecase&utm_term=YOLO

  • 专业字符识别思路:不定长字符识别
    OCR技术中的CRNN字符识别模型:详见https://www.cnblogs.com/skyfsm/p/10335717.html
  • 专业分类思路:检测再识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值