Datawhale 零基础入门CV赛事-Task1 赛题理解
1.赛题数据的处理
数据集与数据标签
该数据来自收集的SVHN街道字符,并进行了匿名采样处理。
训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括4W张照片,测试集B包括4W张照片。
数据标签:
Field | Description |
---|---|
top | 左上角坐标X |
height | 字符高度 |
left | 左上角最表Y |
width | 字符宽度 |
label | 字符编码 |
评测指标
选手提交结果与实际图片的编码进行对比,以编码整体识别准确率为评价指标。任何一个字符错误都为错误,最终评测指标结果越大越好,具体计算公式如下:
Score=编码识别正确的数量/测试集图片数量
数据读取
json标签读取(需跟换相应路径)
import json
train_json = json.load(open('../input/train.json'))
# 数据标注处理
def parse_json(d):
arr = np.array([
d['top'], d['height'], d['left'], d['width'], d['label']
])
arr = arr.astype(int)
return arr
img = cv2.imread('../input/train/000000.png')
arr = parse_json(train_json['000000.png'])
plt.figure(figsize=(10, 10))
plt.subplot(1, arr.shape[1]+1, 1)
plt.imshow(img)
plt.xticks([]); plt.yticks([])
for idx in range(arr.shape[1]):
plt.subplot(1, arr.shape[1]+1, idx+2)
plt.imshow(img[arr[0, idx]:arr[0, idx]+arr[1, idx],arr[2, idx]:arr[2, idx]+arr[3, idx]])
plt.title(arr[4, idx])
plt.xticks([]); plt.yticks([])
我用了000001.png,结果:
简单入门思路:定长字符识别
可以将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。
因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。
经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。
此种思路需要参赛选手构建字符检测模型,对测试集中的字符进行识别。选手可以参考物体检测模型SSD或者YOLO来完成。
关于YOLO 参考:https://blog.csdn.net/u014380165/article/details/72616238?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158982337219724846437367%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=158982337219724846437367&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2blogfirst_rank_v2~rank_v25-2-72616238.nonecase&utm_term=YOLO
- 专业字符识别思路:不定长字符识别
OCR技术中的CRNN字符识别模型:详见https://www.cnblogs.com/skyfsm/p/10335717.html - 专业分类思路:检测再识别