剑指 Offer 04. 二维数组中的查找
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5
,返回 true
。
给定 target = 20
,返回 false
。
这道题毫无疑问可以暴力破解,但同样毫无疑问的是面试官会告诉你:今天我们就到这里吧!~
所以我们需要重新寻找思路
首先研究所给出矩阵的特点:每一行从左至右递增,每一列从左至右递增。
我们可以选择矩阵右上角或者左下角的元素为起点,由所给矩阵的性质可知,某个点的左边点的值均小于这个点的值,而某个点下方的点的值均大于这个点的值。
如果从左上角出发,那么不论是右边的点的值还是下面点的值都小于此点的值,可进不可退
如果从右下角出发,那么不论是左边的点的值还是上面点的值都大于此点的值,可退不可进
而右上和左下,都是进可攻,退可守
·如果当前节点的值大于目标值,向左移动一个;如果当前节点的值小于目标值,向下移动一个
以目标值5为例:
可以看到,按照上述规则移动几次之后找到了目标值5
再以目标值20为例:
这次,矩阵中没有目标值,在按照上述规则移动若干次后,由于超出数组的范围而中止寻找,没能找到。
这样寻找可以保证不会错过目标值。
如果从左下角出发也是同理,只是方向相反而已,不再说明。
下面是从右上角出发的代码
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
if(matrix.length == 0){
return false;
}
int m = matrix.length;//行数
int n =matrix[0].length;//列数
int i=0,j=n-1;
while(i<m && j>=0){
if(matrix[i][j] > target){j--;} //如果当前值大于目标值 左移
else if(matrix[i][j] < target){i++;} //如果当前值小于目标值 下移
else{return true;} //等于目标值返回true
}
return false; //循环结束还没找到 返回false;
}
}