两次生成树

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Sample Input
5 7 2
1 3 0
4 5 1
3 2 0
5 3 1
4 3 0
1 2 1
4 2 1

Sample Output
3 2 0
4 3 0
5 3 1
1 2 1

第一次构建生成树确定哪些鹅卵石路是必须免费的
第二次构建生成树是把生成树中除去必须免费的鹅卵石路的其他的路标记出来

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100005;
int pre[maxn],n,m,k;

struct node
{
    int u,v,w,flag;
}a[maxn];

int fnd(int x)
{
    if(x != pre[x])
    {
        pre[x] = fnd(pre[x]);
    }
    return pre[x];
}

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    int num = 0;
    for(int i=1; i<=m; i++)
    {
        scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
        if(!a[i].w)
            num++;
    }
    if(num < k)
        return 0;
    for(int i=1; i<=n; i++)
    {
        pre[i] = i;
    }
    for(int i=1; i<=m; i++)//第一次构建生成树
    {
        int u = a[i].u;
        int v = a[i].v;
        int w = a[i].w;
        if(fnd(u) != fnd(v) && w)//先尽量让水泥路免费
        {
            pre[fnd(v)] = fnd(u);
        }
    }
    int cnt = 0;
    for(int i=1; i<=m; i++)
    {
        int u = a[i].u;
        int v = a[i].v;
        int w = a[i].w;
        if(fnd(u) != fnd(v) && !w)//统计哪些鹅卵石路是必须免费的
        {
            pre[fnd(v)] = fnd(u);
            a[i].flag = 1;
            cnt++;
        }
    }
    if(cnt > k)//必须免费的鹅卵石路的数量大于k,no solution
    {
        printf("no solution\n");
        return 0;
    }

    int sum = 0;
    for(int i=1; i<=n; i++)
    {
        pre[i] = i;
    }
    for(int i=1; i<=m; i++)//第二次构建生成树
    {
        int u = a[i].u;
        int v = a[i].v;
        int w = a[i].w;
        if(a[i].flag)//先把必须免费的鹅卵石放入生成树
        {
            pre[fnd(v)] = fnd(u);
            sum++;
        }
        else if(fnd(u) != fnd(v) && !w && cnt < k)//如果免费的鹅卵石路还没达到k,则再把这些鹅卵石路变为免费
        {
            pre[fnd(v)] = fnd(u);
            a[i].flag = 1;
            cnt++;
            sum++;
        }
    }
    if(cnt != k)//所有可以加入生成树的鹅卵石路数量少于k
    {
        printf("no solution");
        return 0;
    }
    for(int i=1; i<=m; i++)//把生成树中免费的水泥路标记出来
    {
        int u = a[i].u;
        int v = a[i].v;
        int w = a[i].w;
        if(fnd(u) != fnd(v) && w)
        {
            pre[fnd(v)] = fnd(u);
            a[i].flag = 1;
            sum++;
        }
    }
    if(sum != n-1)//无法构成生成树
    {
        printf("no solution");
        return 0;
    }
    for(int i=1; i<=m; i++)
    {
        if(a[i].flag)
            printf("%d %d %d\n",a[i].u,a[i].v,a[i].w);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值