题意:两个数组定义为相等的,当且仅当从两个数组中任选一个区间[l,r],他们的最小值的下标是一样的,给你两个数组u和v,问你最大的下标p,使得1到p中任选一个区间,他们的最小值下标是一样的。
证明:假设遍历到第i个元素,也就是前i-1个元素都是符合条件的,那么我们需要考虑的新区间就是以第i个元素为右端点的所有区间,现在我们考虑以第i个元素为最小值的区间最左能延伸到哪里,如果两个数组最左能延伸到的位置,即栈大小是一样的,就说明是符合条件的。
题解:两个数组分别用一个单调递增的栈维护,当且仅当遍历到第i个元素,两个栈的size一样,ans = p,否则,直接break。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
int x[maxn],y[maxn];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=1; i<=n; i++)
{
scanf("%d",&x[i]);
}
for(int i=1; i<=n; i++)
{
scanf("%d",&y[i]);
}
stack<int> a,b;
int ans = 1;
for(int i=1; i<=n; i++)
{
while(!a.empty() && x[i] < a.top())
{
a.pop();
}
a.push(x[i]);
while(!b.empty() && y[i] < b.top())
{
b.pop();
}
b.push(y[i]);
if(a.size() != b.size())
break;
else
ans = i;
}
printf("%d\n",ans);
}
}