分层图最短路

题意:n个点,m条边,起点s,终点t,可以最多选k条边免费,问你s到t的一共最小花费多少。

题解:多层图最短路板子题。dis[i][j]表示起点s到点i最多选j条边的最小花费。优先队列q(u,dist,d)分别表示点i,s到i的最小花费,目前已用d条免费边。松弛的时候考虑这条边要不要变成免费边(当然,变成免费边的前提是d+1<=k),如果不变成免费边,dis[v][d] = dis[u][d] + w,q.push({v,dis[v][d],d});如果变成免费边,dis[v][d+1] = dis[u][d],q.push({v,dis[v][d+1],d+1})。最后从dis[t][1]到dis[t][k]里取个min。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 2005;
const int INF = 0x3f3f3f3f;
int n,m,k,s,t,tot;
int dis[maxn][maxn],head[maxn];

struct edge
{
    int to,next,w;
}a[maxn];

struct node
{
    int u,dist,d;
    bool operator < (const node &t) const {
        return dist > t.dist;
    }
};

void add(int u,int v,int w)
{
    a[tot].to = v;
    a[tot].next = head[u];
    a[tot].w = w;
    head[u] = tot++;
}

priority_queue<node>q;
void dij(int s)
{
    memset(dis,0x3f,sizeof(dis));
    dis[s][0] = 0;
    q.push({s,0,0});
    while(!q.empty())
    {
        int u = q.top().u;
        int dist = q.top().dist;
        int d = q.top().d;
        q.pop();
        if(dis[u][d] < dist)
            continue;
        for(int i=head[u]; i!=-1; i=a[i].next)
        {
            int v = a[i].to;
            int w = a[i].w;
            if(dis[v][d] > dis[u][d] + w)
            {
                dis[v][d] = dis[u][d] + w;
                q.push({v,dis[v][d],d});
            }
            if(d+1<=k && dis[v][d+1] > dis[u][d])
            {
                dis[v][d+1] = dis[u][d];
                q.push({v,dis[v][d+1],d+1});
            }
        }
    }
}

int main()
{
    scanf("%d%d%d%d%d",&n,&m,&s,&t,&k);
    memset(head,-1,sizeof(head));
    for(int i=1; i<=m; i++)
    {
        int u,v,w;
        scanf("%d%d%d",&u,&v,&w);
        add(u,v,w);
        add(v,u,w);
    }
    dij(s);
    int ans = INF;
    for(int i=0; i<=k; i++)
    {
        ans = min(ans,dis[t][i]);
    }
    printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值