文章目录
一、代码部分讲解
二、实际部署步骤(CHALM3训练步骤)
1)注册AutoDL官网实名认证
①官网地址:https://www.autodl.com/
②按常规方法注册、登录后,还要做个人实名认证。如果不实名认证,无法从浏览器访问你训练的大模型,看不到训练效果。
2)花费额度挑选GPU
①点击算力市场
②RTX 4090,显存大于 20GB 的均可。选中后,点击「n 卡可租」。
③只需选择一个 GPU,然后点击「社区镜像」,选中自己制定的镜像,然后点击「立即创建」
④在容器实例中可以看到刚创建的容器。当「状态」为「运行中」时,表示创建完成,并且开始计费。
如果想暂停计费,请点击「关机」。下次需要使用时,再点击「开机」。
agiclass/fine-tuning-lab/finetune-lab-v4 是我们制作的容器镜像。它预设好了实验环境,包含了llama2的权重、chatglm3的权重下载命令、训好的checkpoints、自己训练所需的数据集和代码等
3)准备实验环境
①ssh登录容器
在自己电脑的命令行工具内,通过 ssh 登录容器。可以从容器实例页面直接复制 ssh 命令和密码
②第一次执行命令,会询问是否信任主机,输入 yes 即可。
③出现下面界面,说明登录成功。
4)开始执行脚本
①制备实验环境的所有操作步骤都写在了默认目录的init_env.sh脚本中,可以直接运行以准备出所需环境
bash /root/init_env.sh
②脚本解释
下面这段内容为init_env.sh中内容的展开解释:
由于autodl平台制作镜像时不包含数据盘,所以部分文件放置在了系统盘,需要将这些文件挪到数据盘中使用(数据盘的空间较大)llama2-7b的预训练权重和训好的checkpoint都放在/root目录中,运行前需要先将其移动到数据盘即 /root/autodl-tmp