- 博客(97)
- 收藏
- 关注
原创 EndNote导入.enw文件期刊字段识别失败?一招解决Journal字段导入问题
EndNote导入.enw文件时Journal字段识别失败的主要原因是过滤器标签映射不匹配。解决方法包括更新官方EndNote Import过滤器或手动修改过滤器将%J标签映射到Journal字段。规范导入操作步骤,选择正确的过滤器,并检查.enw文件完整性。对于已导入文献,可通过单独修正、自动匹配或批量替换补全期刊信息。预防措施包括使用标准格式导出、定期更新过滤器和避免随意修改映射规则。
2026-02-02 15:27:14
920
原创 【Python绘图】Matplotlib 条形图绘制全面指南
本文全面介绍了使用Matplotlib绘制各类条形图的方法。主要内容包括:1)条形图基础概念与类型(垂直/水平/分组/堆叠条形图);2)基础条形图示例代码(含颜色、标签、误差线等定制);3)分组条形图的实现与比较;4)堆叠条形图的绘制技巧。通过多个代码示例展示了不同场景下的条形图应用,包括数据对比、部分与整体关系展示等可视化需求。文章提供了完整可运行的Python代码片段和效果图示,适合数据可视化初学者和中级用户参考。
2026-01-31 16:46:42
718
原创 QGIS 新手教程 13:矢量数据裁剪、合并与基础整理
本文介绍了QGIS中矢量数据的基础整理操作,包括裁剪、合并和基础整理技巧。主要内容:1)使用裁剪工具将图层限定到指定范围;2)通过合并工具整合多个同类型图层;3)检查几何有效性、删除重复要素等基础整理方法;4)介绍批处理操作提高效率。这些数据预处理步骤是GIS分析的重要基础,能确保后续分析更加高效可靠。文章还预告了下篇将讲解图层选择与属性计算等进阶内容。
2026-01-30 10:36:53
981
原创 ⭐ 深度学习入门体系(第 20 篇): 如何从 0 到 1 训练一个稳定、可复现的深度学习模型
本文系统介绍了构建可复现深度学习训练流程的关键要素。主要内容包括:训练目标设定(泛化能力优先)、数据准备规范(清晰结构+合理增强)、超参数配置策略(batch size/学习率/优化器选择)、训练循环模板(标准前向/反向传播流程)、训练监控方法(loss/acc/学习率曲线分析)常见问题解决方案(不收敛/过拟合等)模型部署流程(权重保存/推理优化)。文章强调深度学习训练应遵循系统化方法而非依赖运气,提供了从数据准备到模型部署的完整工程实践框架,适合希望建立规范化训练流程的开发者参考。
2026-01-13 19:09:47
531
原创 ⭐ 深度学习入门体系(第 19 篇): 过拟合,它是什么?为什么会发生?又该如何解决?
本文深入浅出地讲解了深度学习中的过拟合问题。首先用生活化类比解释过拟合的本质:模型在训练集表现优异但在新数据上表现下降。文章分析了过拟合的四大成因:模型太大数据太少、数据分布不足、特征过于复杂、训练时间过长,并提供了工程师判断过拟合的实用标准。重点介绍了8种解决方案,按效果排序包括数据增强、增大数据量、减小模型、Dropout、权重衰减、早停等,并给出了工程实践中的解决模板。最后强调过拟合是模型学习过细的信号,需要增加多样性和约束。全文以通俗语言将复杂概念具象化,为读者提供了从理论到实践的完整指导。
2026-01-13 19:08:59
888
原创 ⭐ 深度学习入门体系(第 18 篇): Batch Size:为什么它能影响训练速度与泛化能力?
Batch Size(批大小)是深度学习中影响训练速度和模型泛化能力的关键超参数。本文通过餐厅厨房的类比,解释了小批量和大批量的本质差异:小批量训练(如32)噪声大但泛化好,大批量(如4096)梯度稳定但需配合调整学习率。文章揭示了Batch Size与泛化能力的关联(小批量更易找到平坦最优解),并给出工程实践建议:显存有限时用梯度累积,多GPU时线性扩大学习率,大模型需配合Warmup和混合精度。最后提供PyTorch代码示例,总结核心原则是在显存允许下尽量使用大批量,并通过正则化手段补偿可能的精度损失。
2026-01-13 19:08:26
676
原创 ⭐ 深度学习入门体系(第 17 篇): 学习率:为什么它能决定训练成败?
学习率是深度学习中最重要的超参数之一,它直接影响模型训练的成败。本文系统讲解了学习率的核心概念和作用机制:学习率控制参数更新的步长,如同驾驶中的油门力度,过大导致震荡发散,过小则训练缓慢。文章分析了学习率不合适的典型症状,并介绍了主流学习率调度策略(如Warmup+Cosine),提供了PyTorch实现代码。最后总结了8条工程实践共识,强调学习率是模型训练的"命门",掌握其调节技巧能显著提升训练效率。
2026-01-13 19:07:45
867
原创 ⭐ 深度学习入门体系(第 16 篇): ViT:为什么 Transformer 能征服图像世界?
Vision Transformer (ViT) 颠覆了CNN在图像处理领域的统治地位。传统CNN存在局部视野局限、长距离关系建模困难等问题,而ViT通过将图像分割为小块(patch)并采用Transformer架构,实现了全局信息处理能力。ViT的核心优势在于注意力机制能动态关注重要区域,无需像CNN那样堆叠多层来扩大感受野。实验证明,ViT在大规模数据下表现优异,模型扩展性更强,且与预训练范式天然契合。虽然ViT需要更多训练数据且对小目标处理不够稳定,但其全局建模能力使其成为图像处理的新标杆。
2026-01-13 13:41:48
675
原创 ⭐ 深度学习入门体系(第 15 篇): 从 RNN 到 LSTM:为什么深度网络需要“记忆能力”?
本文介绍了深度学习中的时序建模方法,从RNN到LSTM的演进过程。文章首先解释了为什么深度网络需要记忆能力来处理时序依赖任务,如文本、语音和时间序列数据。RNN作为基础记忆网络,通过隐藏状态传递信息,但存在长程依赖和梯度消失问题。LSTM通过引入输入门、遗忘门、输出门和记忆单元,实现了选择性记忆和遗忘,解决了RNN的局限性。文章对比了RNN、LSTM和GRU的特点,并指出虽然Transformer最终取代了它们,但理解这些早期时序模型对掌握深度学习基础至关重要。
2026-01-12 20:49:08
816
原创 ⭐ 深度学习入门体系(第 14 篇): BN / LN / GN:为什么深度网络离不开“归一化”?
本文深入浅出地解释了深度学习中归一化技术的重要性。文章通过生活化类比(如健身房哑铃训练)说明归一化能解决网络训练中的"内部协变量偏移"问题。重点对比分析了三种主流归一化方法:BatchNorm(BN)适用于大batch图像任务,LayerNorm(LN)是NLP/Transformer的首选,GroupNorm(GN)则在小batch视觉任务中表现优异。文章指出归一化是深度学习的"稳定剂",能加快收敛、防止梯度问题、提升泛化能力,是现代深度网络不可或缺的核心组件。
2026-01-12 20:45:41
664
原创 ⭐ 深度学习入门体系(第 13 篇):ResNet:深度网络训练困难的终极解法
ResNet通过引入"残差连接"(skip connection)解决了深度神经网络训练中的退化问题。传统深度网络随着层数增加,会出现梯度消失/爆炸、loss不下降等问题。ResNet的核心思想是让每层只学习输入与输出的"残差"(差值),而非完整映射。这种结构使梯度可通过捷径传播,避免了信息丢失,即使深层网络也能稳定训练。残差块分为BasicBlock(浅层)和Bottleneck(深层),显著提升了模型性能与训练效率。ResNet的成功使其成为现代CNN的标准设计,广泛应用于图像分类、检测等领域。
2026-01-11 11:00:37
807
原创 ⭐ 深度学习入门体系(第 12 篇):卷积神经网络的池化层为什么重要?
本文解析卷积神经网络(CNN)中池化层的重要作用。池化层通过最大池化或平均池化压缩特征图,保留关键信息的同时降低计算量和噪声敏感性。其核心功能包括:降维减少计算量、提取显著特征、增强平移不变性、防止过拟合。文章通过生活化类比(如街景照片识别)和工程实践案例,说明池化层如何精炼信息,使模型更高效稳定。同时指出池化方式选择、尺寸控制的注意事项,并介绍现代替代方案如卷积步幅。池化层作为CNN的"信息精炼器",是提升模型性能的关键组件。
2026-01-11 10:59:48
580
原创 QGIS 新手教程 12:规则网格(Fishnet)的创建与管理(基础篇)
本QGIS新手教程详细介绍了规则网格(Fishnet)的创建与管理方法。教程首先阐述了规则网格的概念、特点及其在GIS分析中的重要性,然后分步骤讲解了两种创建方法:使用Processing工具箱直接生成和基于已有范围图层生成。重点说明了网格参数设置、坐标系选择等关键操作,并针对新手常见问题提供了解决方案。教程还包含网格图层的基础管理技巧,如添加属性字段和样式设置。作为基础篇,本文仅涉及网格创建与管理,为后续空间分析应用奠定数据结构基础。
2026-01-10 16:30:08
793
原创 ⭐ 深度学习入门体系(第 11 篇): 卷积神经网络的卷积核是如何学习到特征的?
本文深入浅出地讲解了卷积神经网络(CNN)中卷积核的工作原理。卷积核本质是可训练的小型特征探测器,通过滑动提取局部特征。浅层卷积核学习边缘、纹理等基础特征,深层卷积核则组合这些特征形成高级语义。卷积核通过反向传播和优化器自动调整参数,无需人工干预。文章用生活化类比解释了卷积核从低级到高级特征的学习过程,并提供了可视化方法和工程实践建议。理解卷积核如何自动学习特征是CNN在图像任务中表现优异的关键。
2026-01-10 13:13:53
837
原创 ⭐ 深度学习入门体系(第 10 篇): 卷积神经网络 CNN 为什么比 MLP 更适合图像?
本文从实战角度对比了CNN和MLP在图像处理任务中的表现差异。核心观点指出:CNN通过局部感知、权重共享和层级特征三大优势,比MLP更适合图像处理。具体表现为:1)CNN保留空间信息,通过卷积核捕捉局部特征;2)参数共享大幅减少参数量;3)多层堆叠实现从边缘到语义的层级理解。相比之下,MLP将图像展平处理导致空间信息丢失、参数量爆炸且泛化能力弱。文章用摄影专家的类比形象说明CNN"由局部到整体"的工作方式,并总结CNN在训练效率、内存占用和特征提取方面的工程优势,是图像任务的首选架构。
2026-01-06 19:46:05
879
原创 ⭐ 深度学习入门体系(第 9 篇): 什么是反向传播?
本文用生活化类比解释深度学习中的反向传播机制。反向传播通过链式法则将损失值从输出层逐层传递到各参数,计算每个参数对损失的影响(梯度),从而指导参数调整方向。整个过程如同老师批改作业后,学生根据反馈调整书写方式。反向传播与优化器配合,形成"前向计算-反向传播-参数更新"的循环,使网络自动学习。文章还澄清了常见误区,指出反向传播虽复杂但可被现代框架自动处理,是深度学习训练的核心机制。
2026-01-05 18:49:27
498
原创 ⭐ 深度学习入门体系(第 8 篇): 什么是优化器?
本文深入浅出地讲解了深度学习中的优化器原理与应用。文章通过生活化类比(如教练指导运动员)解释优化器的作用,重点分析了SGD、Momentum、Adam和AdamW等主流优化器的特点:SGD稳定但慢,Adam自适应学习率适合新手,AdamW则解决了权重衰减问题成为大模型标准选择。文中还提供了实用选择建议:初学者用Adam,大规模训练选SGD+Momentum,NLP和大模型推荐AdamW。最后强调学习率是最关键的调参因素。全文以直观比喻和清晰图表,帮助读者快速掌握优化器的核心要义。
2026-01-04 19:27:55
1028
原创 QGIS 新手教程 11:在 QGIS 中绘制矩形矢量数据(规则面要素构建)
本教程介绍QGIS中绘制矩形矢量数据的三种方法:1)使用内置矩形工具(角点、中心点、范围三种模式);2)精确绘制(通过状态栏控制尺寸与坐标);3)借助插件或处理工具生成。重点强调投影坐标系对几何精度的影响,并详细说明绘制后的属性处理流程。适用于研究区边界、城市分区等规则面要素构建场景,帮助用户从基础绘图迈向规范建模。
2026-01-03 12:53:49
1173
原创 ⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
本文深入浅出地讲解了深度学习中损失函数的核心概念。损失函数是衡量模型预测准确度的标尺,为训练过程提供方向指引。文章通过生活化类比(如投篮、买饮料)解释了不同任务需要不同损失函数的原因:回归任务用MSE/MAE,分类任务首选交叉熵。重点剖析了交叉熵为何成为分类任务的黄金标准——它不仅评估预测正确性,还考量预测信心程度,能提供更强的训练信号。同时对比了MSE在分类任务中的不足,并简要介绍了其他常见损失函数的适用场景。最后强调损失函数与优化器的协同关系,为模型训练提供完整的调整机制。
2025-12-31 20:19:45
761
原创 ⭐ 深度学习入门体系(第 6 篇): MLP 和 CNN 有什么本质区别?
本文深入浅出地解释了MLP(多层感知器)和CNN(卷积神经网络)的本质区别。MLP通过展平图像处理所有像素,但会丢失空间结构信息;而CNN通过局部卷积核逐步理解图像,保留了空间关系。关键区别在于:CNN天然理解图像空间结构,而MLP更适合处理结构化数据。对于图像任务,CNN是首选,因其参数共享、局部感知特性;而MLP更适合表格数据等非空间结构任务。虽然存在视觉MLP等改进模型,但传统MLP在图像处理上仍远不及CNN高效准确。
2025-12-29 21:18:59
907
原创 ⭐ 深度学习入门体系(第 5 篇): CNN 为什么能“看懂图片”?
这篇文章通过生活化类比解释了卷积神经网络(CNN)的工作原理。CNN通过卷积核(类比摄影评委的滤镜)扫描图像局部区域,逐层提取从边缘到物体部件再到整体语义的特征。浅层捕捉简单几何结构,深层识别复杂物体概念。池化操作缩小图像聚焦重要特征,stride控制扫描步长,padding防止边缘信息丢失。CNN的优势在于局部感受野、权重共享和平移不变性,使其能有效抗噪声和位置变化。核心思想是"局部提取→全局组合→多层语义构建",让计算机像人类一样逐步理解图像内容。
2025-12-26 20:11:12
469
原创 ResNet50 图像分类完整实战(Notebook Demo + 训练代码)
本文介绍了使用ResNet50进行图像分类的完整实战流程。文章首先解释了选择ResNet50的原因,将其比喻为"家用轿车"般稳定可靠。然后展示了项目的简洁结构,强调Notebook设计为可复用的模板,包含环境检查、数据加载、模型构建等清晰步骤。重点讲解了ResNet50的简单改造方法,只需替换最后一层即可适配新任务。训练部分采用基础循环,并强调训练曲线的可视化价值。最后指出该项目的核心目标是建立标准流程认知,而非追求SOTA性能,为后续升级打下基础。全文提供了一套可直接应用于实际项目的完整解决方案。
2025-12-24 20:24:22
1067
原创 用 Python 画一张不那么“难看”的横向累计柱状图
本文介绍了如何用Python绘制美观实用的横向累计柱状图,并提供了8种配色方案。文章首先解释了这种图表适用于展示多年累计数据的特点,然后给出基础代码模板。重点推荐了8种风格各异的配色方案:彩虹卡通风、冰淇淋清新风、清爽夏日风、马卡龙梦幻风、夜空星辰风、森系自然风、科技未来风和节日快乐风,每种都配有适用场景说明和可直接使用的颜色代码。最后总结了不同场景下的配色选择建议,强调图表既要美观又要易于理解。通过灵活运用这些配色方案,可以让数据可视化作品既专业又富有表现力。
2025-12-20 17:26:55
990
原创 ImportError: cannot import name ‘OrderedDict‘ from ‘typing‘ 问题解决
在使用 PyTorch 编写的代码时,运行 `model.py` 出现了一个环境错误:`ImportError: cannot import name 'OrderedDict' from typing`。表面看是代码问题,实际上是 **Python 3.7 与较新版本 torchvision 不兼容** 导致的。由于新版 torchvision 会默认加载 MaxViT 等新模型,而这些实现依赖 Python 3.8 之后的 typing 特性,从而在旧环境中直接直接报错。
2025-12-19 20:33:41
967
原创 ⭐ 深度学习入门体系(第 4 篇): 损失函数与优化器到底怎么选?
本文为深度学习新手提供了一份清晰的损失函数与优化器选择指南。损失函数相当于模型的"痛觉系统",根据任务类型推荐:多分类用CrossEntropyLoss、二分类/多标签用BCEWithLogitsLoss、回归用MSELoss、分割用CE+Dice组合。优化器方面,推荐使用AdamW作为默认选择,Adam作为简化版,不推荐单独使用SGD。文章特别强调PyTorch已内置Softmax/Sigmoid计算,输出层无需额外添加激活函数。通过生活化类比和实用表格,帮助新手快速掌握深度学习训练的核心配置要点。
2025-12-18 20:11:23
823
原创 PyTorch 图像分类完整项目模板实战
本文介绍了一个PyTorch图像分类项目模板,旨在帮助初学者建立体系化的工程思维。该模板包含完整的项目结构,支持Jupyter Notebook可视化演示,并提供示例数据生成脚本。作者强调模板的价值在于提供可复用、可扩展的基础框架,而非单一功能的实现。通过这个轻量级但结构完整的"迷你工程",用户可以快速开展各类图像分类任务,只需替换数据集和调整参数即可。项目资源包含完整源码、Notebook和运行说明,适合作为深度学习项目的入门模板。
2025-12-14 15:07:35
902
原创 ⭐ 深度学习入门体系(第 3 篇):反向传播到底怎么工作的?
本文通过"找丢失的钱包"的生动类比,通俗易懂地解释了深度学习中反向传播的核心原理。文章将梯度下降比作"逆着脚印找钱包",损失函数比作"丢钱包的痛苦程度",梯度则是"最快找到钱包的方向"。通过链式法则的概念,说明反向传播如何像"逐层倒查责任"一样,从输出层反向计算每一层对错误的贡献。文中还简要介绍了不同优化器的特点,并强调反向传播是深度学习能够"自我纠错"和"分层学习"的技术基石。最终将反向传播的本质概括为"根据错误往回推,逐层算责任,再逐层修正"的数学过程。
2025-12-13 09:55:21
891
原创 ⭐ 深度学习入门体系(第 2 篇): 为什么神经网络一定需要激活函数?
激活函数是神经网络的核心组件,没有它,无论网络多深都只能进行线性变换,无法解决复杂问题。本文用生活类比解释:没有激活函数就像只能直行的车,无法适应复杂道路;加入激活函数后,网络获得非线性能力,可以拟合任意复杂模式。从数学角度看,激活函数使多层网络能够表达非线性关系,实现图像识别、语音处理等任务。工程上推荐使用ReLU(默认选择)、Sigmoid(输出层)或GELU(NLP任务)。每层都必须包含激活函数,否则网络将退化为单层线性模型。激活函数的本质意义在于引入非线性,这是深度学习能处理现实世界复杂问题的关键。
2025-12-11 19:42:58
793
原创 ⭐ 深度学习入门体系(第 1 篇):什么是神经网络?——从生活到公式,一次讲清!
本文用生活化类比系统讲解了神经网络的核心概念:神经网络是一个通过经验不断自我更新的数学系统,其工作原理类似小孩学习认猫的过程。文章通过美食评论家打分、电灯开关等生动例子,解释了神经元(加权求和+激活函数)、权重(特征重要性)、偏置(默认倾向)、激活函数(决策开关)等关键概念。神经网络通过前向传播(预测)、计算损失(评估误差)、反向传播(调整权重)和参数更新(优化)的循环过程进行学习,最终形成有经验的分类器。本文为深度学习初学者提供了直观易懂的入门指南。
2025-12-10 19:38:45
1047
原创 【环境配置】Windows 下使用 Anaconda 创建 Python 3.8 环境 + 安装 PyTorch + CUDA(完整教程)
本文详细介绍了在Windows系统下使用Anaconda配置Python 3.8深度学习环境的完整流程。主要内容包括:检查显卡驱动和CUDA版本、创建conda虚拟环境、安装PyTorch(选择合适的CUDA版本)、验证GPU是否正常工作等关键步骤。文章特别澄清了CUDA Toolkit安装的必要性问题,指出普通用户通常不需要安装。最后提供了完整的5步操作流程和常见问题解答,帮助初学者快速搭建可用的PyTorch GPU开发环境。
2025-12-05 20:33:25
1131
1
原创 QGIS空间分析实战:基于缓冲区与叠置分析的市区超市选址指南
本文介绍了利用QGIS进行超市选址的空间分析方法。通过缓冲区分析确定居民区、道路、学校和竞争对手的影响范围,再运用叠置分析筛选出最佳候选区域。实验以济南市章丘区为例,详细演示了数据准备、缓冲区建立、区域叠加和结果可视化的完整流程。文章还探讨了进阶分析方法,如加权叠加和成本考量。该方法将商业选址决策转化为可量化的空间分析模型,为零售业选址提供了科学依据。使用免费开源的QGIS工具,使这一专业分析过程具有成本低、可重复的优势,适合商业地理分析的入门实践。
2025-11-26 20:42:04
1172
原创 实用指南:两种渠道下载可直接使用的OpenStreetMap(OSM)数据
本文介绍了从OpenStreetMap高效获取数据的专业网站和方法。重点推荐Geofabrik和BBBike两大网站,它们能直接将OSM数据转换为GIS软件友好格式,简化工作流程。同时提供Overpass-turbo和QGIS QuickOSM插件作为高级技术补充。
2025-11-14 15:42:06
1402
原创 Microsoft Excel 效率专题:创建下拉列表,规范数据输入
本文详细介绍了在Microsoft Excel中创建下拉列表的方法,通过使用“数据验证”功能规范数据输入。文章涵盖两种选项准备方式(直接输入或引用单元格),分步骤指导设置过程,并提供了效果验证和小技巧。该功能可有效避免输入错误,提升数据录入效率和准确性,适用于需要标准化输入的各类表格场景。
2025-11-13 19:55:24
577
原创 快速应用专业配色!手把手教你导入QGIS官方库中的国土空间规划样式
本文详细介绍如何在QGIS中导入官方资源库中的《国土空间规划样式库》和《国土空间规划分区配色表》,以提升制图效率。通过“样式管理器”连接在线库,搜索贡献者“Keke”分享的资源并下载,再将文件导入本地样式库。导入后,可在图层属性中直接应用这些专业符号和配色方案,快速实现符合规范的国土空间规划制图。该教程充分利用QGIS社区共享资源,助力用户高效完成专业地图制作。
2025-11-04 14:01:17
1101
原创 QGIS 中 Landsat 数据的实际处理示例(波段合成 + 裁剪 + 指数计算)
本文介绍了在QGIS中处理Landsat卫星影像的完整流程,包括波段合成、裁剪和指数计算三个关键步骤。首先通过合并工具将单波段数据合成为真彩色或假彩色影像,然后使用掩膜或范围裁剪提取研究区域,最后利用栅格计算器生成NDVI(归一化植被指数)和NDWI(归一化水体指数)等常用遥感指数。文章详细说明了每个步骤的操作方法、波段组合选择和计算公式,为后续的遥感分析(如分类、变化检测等)提供了基础处理方法。所有操作均在开源软件QGIS中完成,适用于Landsat 8/9 L2SP地表反射率产品。
2025-10-26 15:53:40
1299
原创 QGIS字段计算器常用公式汇总(含实操示例)
本文系统整理了QGIS字段计算器的常用表达式,涵盖数值计算、字符串处理、日期时间、几何属性、条件判断与空间分析等模块。通过建筑物面要素示例数据,演示了面积计算、高度转换、字符串拼接、使用年限计算等实用公式,并提供了建筑风险评估等综合应用案例。文章还给出了投影坐标系使用、新建字段保存结果等实用建议,帮助用户快速掌握QGIS数据计算与自动化处理的核心技巧。
2025-10-18 16:37:19
1404
原创 QGIS制图专题4:缓冲区分析与服务半径专题图制作
本文以济南市为例,演示了QGIS缓冲区分析技术在公共服务设施评估中的应用。通过获取公园绿地与居民区数据,建立1000米步行服务半径缓冲区,计算覆盖率并制作专题图。完整流程包括数据获取、坐标转换、空间叠加分析和可视化表达,为城市规划中的"15分钟生活圈"评估提供技术支撑。该方法可推广至学校、医院等各类公共设施的布局优化与可达性研究。
2025-10-18 14:59:24
930
原创 学术研究双雄:Research Rabbit 与 Consensus,你该如何选择?
两款AI学术工具Research Rabbit和Consensus分别解决不同研究需求:前者通过可视化网络帮助用户系统梳理领域文献(适合文献综述),后者直接回答具体研究问题(适合快速求证)。两者可形成互补工作流:先用Research Rabbit构建知识框架,再用Consensus验证具体观点,最后用文献管理软件整理引用。工具免费开放,建议研究者根据需求灵活选用。
2025-10-11 17:05:10
1291
原创 手把手教程:QGIS + ORS Tools 生成城市步行等时圈实操教程
摘要:本文详细介绍了使用QGIS和ORS Tools插件生成城市步行等时圈的完整流程。从获取OpenRouteService API密钥开始,到准备住宅点数据、安装配置插件,最终批量生成5、10、15分钟步行等时圈。该方法基于真实道路网络计算,克服了传统缓冲区方法的局限,为城市可达性研究和15分钟生活圈规划提供了高效精准的解决方案。教程包含数据准备、插件配置、参数设置等关键步骤,并展示了结果在人口覆盖评估、设施公平性分析和规划支持等方面的应用价值。
2025-09-24 20:49:42
1167
原创 手把手教程:使用QGIS和GeoHey插件处理高德地图POI数据与坐标转换
本教程详细介绍了如何利用QGIS和GeoHey插件处理高德地图POI数据,并完成坐标转换。主要内容包括:申请高德API Key、使用Python脚本获取POI数据并保存为CSV、将数据导入QGIS创建点图层,以及安装GeoHey插件进行GCJ-02到WGS84坐标转换。教程特别强调了高德数据采用GCJ-02火星坐标与国际通用WGS-84的偏移问题,并提供了完整的代码示例和操作截图,帮助用户快速上手处理中国地区的地理数据。
2025-09-23 15:52:32
1620
Python Matplotlib条形图/柱状图绘制从入门到精通:9种高级可视化效果完整代码集合
2026-01-31
城市降水数据可视化|Python Matplotlib|横向累计柱状图与8种配色方案|科研与教学示例资源
2025-12-20
ResNet50 图像分类训练全流程代码(Notebook + 完整注释)-基于 PyTorch 的工程化实战示例
2025-12-19
PyTorch 图像分类完整项目模板(01-pytorch-image-classification-template.zip)
2025-12-14
QGIS-超市选址-缓冲区叠置分析-济南章丘-示例数据集
2025-11-28
QGIS新手教程6:QuickOSM下载街道数据+图层样式分类实战 中下载的历下区的highway矢量数据
2025-06-19
geoBoundaries-CHN-ADM3-all
2025-06-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅