依赖注入是什么?

依赖注入(Dependency Injection)
Spring的两个核心内容为控制反转(Ioc)和面向切面(AOP),依赖注入(DI)是控制反转(Ioc)的一种方式。

依赖注入这个词让人望而生畏,现在已经演变成一项复杂的编程技巧 或设计模式理念。但事实证明,依赖注入并不像它听上去那么复杂。 在项目中应用DI,你会发现你的代码会变得异常简单并且更容易理解 和测试。

DI功能是如何实现的

任何一个有实际意义的应用(肯定比Hello World示例更复杂)都会由 两个或者更多的类组成,这些类相互之间进行协作来完成特定的业务 逻辑。按照传统的做法,每个对象负责管理与自己相互协作的对象(即它所依赖的对象)的引用,这将会导致高度耦合和难以测试的代 码。

举个例子,考虑下程序清单1.2所展现的Knight类。

DamselRescuingKnight只能执行RescueDamselQuest 探险任务

可以看到,DamselRescuingKnight在它的构造函数中自行创建了 Rescue DamselQuest。这使得DamselRescuingKnight紧密地 和RescueDamselQuest耦合到了一起,因此极大地限制了这个骑 士执行探险的能力。如果一个少女需要救援,这个骑士能够召之即 来。但是如果一条恶龙需要杀掉,或者一个圆桌……额……需要滚起 来,那么这个骑士就爱莫能助了。

更糟糕的是,为这个DamselRescuingKnight编写单元测试将出奇 地困难。在这样的一个测试中,你必须保证当骑士的 embarkOnQuest()方法被调用的时候,探险的embark()方法也要 被调用。但是没有一个简单明了的方式能够实现这一点。很遗 憾,DamselRescuingKnight将无法进行测试。

耦合具有两面性(two-headed beast)。一方面,紧密耦合的代码难以 测试、难以复用、难以理解,并且典型地表现出“打地鼠”式的bug特 性(修复一个bug,将会出现一个或者更多新的bug)。另一方面,一 定程度的耦合又是必须的——完全没有耦合的代码什么也做不了。为 了完成有实际意义的功能,不同的类必须以适当的方式进行交互。总 而言之,耦合是必须的,但应当被小心谨慎地管理。

通过DI,对象的依赖关系将由系统中负责协调各对象的第三方组件在 创建对象的时候进行设定。对象无需自行创建或管理它们的依赖关系,如图1.1所示,依赖关系将被自动注入到需要它们的对象当中 去。 

 

依赖注入会将所依赖的关系自动交给目标对象,而不是让对象自己去获取 依赖 为了展示这一点,让我们看一看程序清单1.3中的BraveKnight,这 个骑士不仅勇敢,而且能挑战任何形式的探险。

BraveKnight足够灵活可以接受任何赋予他的探险任 务 我们可以看到,不同于之前的 DamselRescuingKnight,BraveKnight没有自行创建探险任 务,而是在构造的时候把探险任务作为构造器参数传入。这是依赖注 入的方式之一,即构造器注入(constructor injection)。

更重要的是,传入的探险类型是Quest,也就是所有探险任务都必须 实现的一个接口。所以,BraveKnight能够响应 RescueDamselQuest、 SlayDragonQuest、 MakeRound TableRounderQuest等任意的Quest实现。

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值