- 博客(54)
- 资源 (2)
- 收藏
- 关注
原创 【全文翻译】Membership Inference Attacks Against Machine Learning Models
摘要—我们定量研究了机器学习模型如何泄漏有关对其进行训练的单个数据记录的信息。 我们专注于基本的成员推理攻击:给定数据记录和对模型的黑匣子访问,确定记录是否在模型的训练数据集中。 为了针对目标模型执行成员推理,我们在对抗中使用了机器学习,并训练了自己的推理模型,以识别目标模型在训练后的输入与未训练在输入上的预测之间的差异。我们对由商业“机器学习即服务”提供商(例如Google和Amazon)训练的分类模型进行经验评估,以评估我们的推理技术。 使用现实的数据集和分类任务,包括其出入会受到隐私角度影响的医院
2020-12-03 14:46:50 5649 19
原创 形态学重建之孔洞填充
白菜苗1、什么是膨胀(如果已经了解,请往下看)2、什么是孔洞填充(如果已经了解,请往下看)3、什么是形态学重建(如果已经了解,请往下看)4、什么是测地膨胀(如果已经了解,请往下看)5、什么是形态学重建之孔洞填充(终于到正题了)6、实验如果你不小心又亦或是专门寻找形态学相关知识,那么很高兴能和你们分享这篇文章。首先,如果想了解形态学重建之孔洞填充原理,那么必须先了解什么是膨胀、什么是孔洞填充、什么是形态学重建、什么是测地膨胀,只有具备相关知识,我们才能把形态学重建之孔洞填充原理吃透。话不多说!!我们看看
2020-11-28 15:52:30 11463 13
原创 【全文翻译】Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing
摘要随着深度学习的突破,近年来见证了人工智慧(AI)应用程序和服务的蓬勃发展,从个人助理到推荐系统再到视频/音频监视者。 最近,随着移动计算和物联网(IoT)的普及,数十亿个移动和IoT设备连接到Internet,从而在网络边缘生成了数十亿字节的数据。 在这种趋势的推动下,迫切需要将AI前沿推向网络边缘,以充分释放边缘大数据的潜力。 为了满足这种需求,边缘计算是一种新兴的范例,它将计算任务和服务从网络核心推向网络边缘,已被广泛认为是一种有前途的解决方案。 由此产生的新的交叉学科,边缘人工智能或边缘智能(E
2020-11-09 12:57:50 2434 2
原创 轻松上手Matplotlib__单式(单类别)条形图篇(详细讲解横轴、竖轴数字标注)
Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索 matplotlib 的常见用法。条形图:排列在工作表的列或行中的数据可以绘制到条形图中。特点:绘制连离散的数据,能够一眼可看出各个数据的大小,比较数据之间的差别。(统计)首先,我们分析下绘制柱状图代码:(基于Jupyter Notebook运行,Pycharm也可)from matplotlib import pyplot as plt#####
2020-11-01 14:58:36 2990
原创 [附相应图片]HTML+CSS学成网首页制作基础案例
这是一个比较基础的html和css基础案例实战,适合刚学习完各种html控件和css标签的应用。
2020-01-23 15:29:50 8452 9
原创 torch中dim(0/1)维度表示
dim维度dim=0代表是列,dim=1代表是行import torcha = [[1,3,5,], [2,4 6], [7,8,9]]a = torch.tensor(a).float()t = a.mean(dim=0) #dim=0代表是列print(t)输出结果(列求均值):t = a.mean(dim=)print(t)输出结果(行求均值):...
2021-11-15 16:47:37 1764
原创 【全文翻译】Composite Adversarial Attacks
Abstract对抗性攻击是一种欺骗机器学习模型的技术,它提供了一种评估对抗性鲁棒性的方法。在实践中,攻击算法是由人类专家人工选择和调整的,以破坏ML系统。然而,手动选择攻击者往往是次优的,导致对模型安全性的错误评估。本文提出了一种新的过程,称为复合对抗攻击(CAA),用于从32个基本攻击者的候选池中自动搜索攻击算法及其超参数的最佳组合。我们设计了一个搜索空间,将攻击策略表示为一个攻击序列,即前一个攻击者的输出作为后继攻击者的初始化输入。采用多目标NSGA-II遗传算法,以最小的复杂度寻找最强的攻击策略。
2021-07-09 22:33:37 1569 5
原创 【全文翻译】REMIXMATCH: SEMI-SUPERVISED LEARNING WITH DISTRIBUTION ALIGNMENT AND AUGMENTATION ANCHORING
REMIXMATCH:具有分布对齐和增广锚定的半监督学习ABSTRACT1 INTRODUCTION2 BACKGROUND(背景)2.1 MIXMATCHABSTRACT我们改进了最近提出的“MixMatch”半监督学习算法,引入了两种新的技术:分布对齐和增强锚定。分布对齐鼓励对未标记数据的预测的边际分布接近真实标签的边际分布。增强锚定将输入的多个强增强版本输入到模型中,并鼓励每个输出都接近相同输入的弱增强版本的预测。为了产生强增强,我们提出AutoAugment的一个变体,它在模型被训练时学习增强策
2021-06-18 14:33:49 1394 4
原创 【全文翻译】MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch:半监督学习的整体方法Abstract1 Introduction2 Related WorkAbstract半监督学习已被证明是一个强大的范例,利用未标记的数据,以减轻对大型标记数据集的依赖。在这项工作中,我们统一了目前半监督学习的主流方法,提出了一种新的算法MixMatch,该算法为数据增强的未标记样本猜测低熵标签,并使用MixUp混合标记和未标记的数据。MixMatch通过大量的数据集和标记的数据量获得最先进的结果。例如,在具有250个标签的CIFAR-10上,我们将错误率降低了4
2021-06-09 15:12:17 1086
原创 【全文翻译】DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUPERVISED LEARNING
DIVIDEMIX:带噪声标签的半监督学习ABSTRACT深度神经网络是众所周知的注释饥渴。在使用深度网络进行学习时,许多人致力于降低注释成本。两个突出的方向包括带噪标签的学习和利用未标记数据的半监督学习。在这项工作中,我们提出了DivideMix,这是一个利用半监督学习技术进行带噪标签学习的新框架。特别地,DivideMix使用混合模型对每个样本的损失分布进行建模,将训练数据动态划分为干净样本的标记集和噪声样本的非标记集,并以半监督的方式对标记和非标记数据进行训练。为了避免确认偏差,我们同时训练两个分
2021-06-05 15:30:55 1730
原创 jQuery层次选择器——jQuery学习(4)
层次选择器:查找子元素,后代元素,兄弟元素的选择器1、ancestor descendant在给定的祖先元素下匹配所有的后代元素;2、parent>child在给定的父元素下面匹配所有的子元素;3、pre+next匹配所有紧接着在pre后的next元素;4、prev~siblings匹配prev元素之后的所有siblings元素实例代码:<!DOCTYPE html><html><head> <title>层次选择器</t
2021-05-17 19:45:11 293
原创 jQuery基本选择器——jQuery学习(3)
示例代码:<!DOCTYPE html><html><head> <title>基本选择器</title> <meta charset="utf-8"></head><body> <div id="div1" class="box">div1(class="box")</div> <div id="div2" class="box">div2(class="b
2021-05-17 17:00:05 94
原创 jQuery对象——jQuery学习(2)
1、jQuery对象是一个包含所有匹配的任意多个dom元素的伪数组对象;2、基本行为:size()/length():包含的DOM元素个数;[index]/get(index):得到对应位置的dom元素;each():遍历包含的所有dom元素;index():得到在所在兄弟元素中的下标。代码示例:<!DOCTYPE html><html><head> <title>jQuery对象</title></head>
2021-05-17 16:04:04 114
原创 jQuery核心函数——jQuery学习(1)
1.作为一般函数调用:$(param)1).参数为函数:当DOM加载完成后,执行此回调函数2).参数为选择器字符串:查找所有匹配的标签,并将它们封装成jQuery对象3).参数为DOM对象:将dom对象封装成jQuery对象4).参数为HTML标签字符串(用得少):创建标签对象并封装成jQuery对象2.作为对象使用:$.xxx()1).$.each():隐式遍历数组2).$.trim():去除两端空格代码讲解示例:<!DOCTYPE html><html>&l
2021-05-17 16:00:21 125
原创 豆瓣Tp250条movies数据爬取+可视化(python+Mysql+源码)
这里写目录标题一、数据爬取1、这是要用到的库文件2、接着我们根据豆瓣网页的HTML代码3、接着开始爬取数据设置4、下一步就是加上正则提取想要数据,如果不知道每句话干嘛,可以print打印结果就明白了5、有了数据,接下来就用Mysql保存数据6、这里我简单提一下PyCharm与Mysql连接步骤,看红框位置7、爬取结果二、数据可视化1、完整代码附上对于豆瓣电影的Tp250条movies数据的爬取+可视化我们分为两个步骤:1、数据的爬取;2、数据的可视化。对于一个爬虫数据,我们简单就几行就可以爬取到一个
2021-05-14 20:37:26 9087 38
原创 nodemon : 无法加载文件 C:\Users\Administrator\AppData\Roaming\npm\nodemon.ps1因为在此系统上禁止运行脚本。
1、找到Windows PowerShell,右键,以管理员身份进行:2、输入:
2021-05-14 13:47:55 3925 7
原创 豆瓣爬虫btmd_12_Mamba文件
链接: https://pan.baidu.com/s/1fxgu8B9LHV839-XgNB0M-g提取码:rb2k
2021-05-10 19:06:32 866 1
原创 from scipy.misc import imread 报错解决方法
试过很多方法不行的话,建议使用这个命令试试:\color {red} {建议使用这个命令试试:}建议使用这个命令试试:pip install pillow
2021-04-20 18:50:07 261
原创 【全文翻译】Boosting Adversarial Attacks with Momentum
深度神经网络容易受到对抗性样本的攻击,由于潜在的严重后果,这对这些算法带来了安全问题。在部署深度学习模型之前,对抗性策略可以作为一个重要的替代工具来评估深度学习模型的可行性。然而,现有的大多数对抗性攻击只能愚弄一个成功率较低的黑盒模型。为了解决这个问题,我们提出了一大类基于动量的迭代算法来增强对抗性攻击。通过在迭代过程中引入动量项,我们的方法可以在迭代过程中稳定更新方向,避免局部极值,从而产生更多可转移的对抗性例子。为了进一步提高黑箱攻击的成功率,我们将动量迭代算法应用到一个模型集合中,并
2021-04-19 14:38:26 1488
原创 L0范数,L1范数,L2范数,Lp范数,无穷范数,Frobenius 范数表示意义
L0范数:是指向量中非0的元素的个数。L1范数:是指向量中各个元素绝对值之和。L2范数:是指向量各元素的平方和然后求平方根。Lp范数: 是指向量各个元素绝对值p次方和的1/p次方。无穷范数:是指向量中各个元素绝对值的最大值。...
2021-04-18 10:54:57 13363
原创 Js强制类型转换——String类型 / Number类型/Boolean类型
Srting类型 / Number类型强制类型转换---String强制类型转换---NumberJS有六种数据类型,其中前五为基本数据类型:类型名称String字符串Number数值Boolean布尔值Null空值Undefined未定义Object对象其中Null类型中 只有一个值,就是null,表示一个为空的对象。类型转换主要是指,将其他类型的数据类型,转换为String\color{green}{String}String
2021-03-14 16:34:02 7529
原创 Django常用表单增删查改操作
白菜苗1、查询一个数据:2、获得第一个数据:3、获得最后一个数据:4、获得数据记录总数:5、查询多条记录(切片):6、模糊查询:7、查询某个字段是否为空:8、多条件查询:9、部分查询:10、排除一部分查询:11、排序:12、数据id(其它条件也行)大于某个值(147):13、数据id(其它条件也行)小于某个值(147):14、数据id(其它条件也行)大于或等于某个值(147):15、查询符合条件集合里的所有数据,in代表或的关系,符合147/149:16、查询符合条件集合里的所有数据,range代表范围,符
2021-01-28 14:26:53 1221 2
原创 【全文翻译】Machine Learning with Membership Privacy using Adversarial Regularization
摘要--机器学习模型会泄露训练它们的数据集的信息。对手可以构建一个算法来跟踪模型训练数据集的各个成员。作为一种基本的推理攻击,他旨在区分作为模型训练集一部分的数据点和来自同一分布的任何其他数据点。这就是所谓的跟踪(也是成员推理)攻击。在本文中,我们主要研究针对黑盒模型的攻击,其中对手只能观察模型的输出,而不能观察模型的参数。这是机器学习作为互联网服务的当前设置。我们引入了一种隐私机制来训练机器学习模型,该模型能够实现成员隐私:模型对其训练数据的预测与对来自同一分布的其他数据点的预测无法区分。我们设计了一
2020-12-13 16:41:16 1140 4
原创 【全文翻译】ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine.....
摘要--机器学习(ML)已成为许多实际应用的核心组成部分,而训练数据是推动当前进展的关键因素。这一巨大的成功促使互联网公司部署机器学习即服务(MLaaS)。最近,第一次成员推理攻击表明,在这种MLaaS设置中提取训练集上的信息是可能的,这具有严重的安全性和隐私性。然而,这种攻击的可行性的早期证明对对手有许多假设,例如使用多个所谓的影子模型、了解目标模型结构、拥有与目标模型训练数据相同分布的数据集。我们放宽了所有这些关键假设,从而表明此类攻击以较低的成本非常广泛地适用,因此构成了比先前认为的更严重的风险。
2020-12-06 16:22:53 1586 1
原创 【文章思路、算法分析】Membership Inference Attacks Against Machine Learning Models
第三方第三方
2020-12-05 20:52:36 3126 13
原创 tensorflow(anaconda)用pip安装cv2
首先通过Anaconda Prompt进入tensorflow环境:#激活tensorflowactivite tensorflow#安装CV2pip install opencv-python过程如图:结果正常运行且无误:python环境下安装,直接用一条命令行即可:pip install opencv-python...
2020-11-26 19:06:43 2773 4
原创 【全文翻译】EXPLAINABLE ARTIFICIAL INTELLIGENCE: UNDERSTANDING, VISUALIZING AND INTERPRETING DEEP LEARNING
随着大型数据库的可用性以及深度学习方法的最新改进,在越来越多的复杂任务上,人工智能系统的性能已经达到甚至超过了人类的水平。 这种发展的令人印象深刻的例子可以在诸如图像分类,情感分析,语音理解或战略游戏等领域中找到。 但是,由于它们嵌套的非线性结构,这些非常成功的机器学习和人工智能模型通常以黑匣子的方式应用,即,没有提供有关使它们准确达到其预测的信息。 由于缺乏透明度可能是主要的缺点,例如在医学应用中,用于可视化,解释和解释深度学习模型的方法的开发最近引起了越来越多的关注。 本文概述了该领域的最新发展,并呼吁
2020-11-25 17:01:21 1872 2
原创 【问题原因和解决】jupyter 无法定位程序输入点 Anacond\libary\bin\pythoncom37.dll
问题原因和解决1.报错的原因,我的理解是python环境相互覆盖了。2.怎样解决3.总结这个图报错已经困扰我好几天了,看了别人很多博客,尝试了很多方法,但没什么效果,不过最终还是找到问题的所在了。为何我如此纠结,死磕不放呢,当然不完全是因为有点小强迫症,而是因为我想偷懒,为何这样说呢,那让我们来分析下原因:(这图,是我Anaconda安装了tensorflow后,启动jupyter所报的错,我看大部分人都是报虚拟环境tensorflow的错,而我的是反过来的。所以我很少找到有相应解决方案(头疼)。)
2020-11-20 17:12:08 9604 7
原创 安装好TensorFlow后,怎么在Jupyter Notebook使用且运行
按照正常启动Anaconda中的Jupyter,然后输入以TensorFlow代码其实不会正常运行原因在于当前的环境是基于Anaconda中的python环境,因此我们需要进入对应的tensorflow环境次才能正确导包。在进入tensorflow环境前,我们先要进行以下三个小配置:#首先激活tensorflow(基于Anaconda Prompt命令框)(base) C:\Users\TQ> activate tensorflow(tensorflow) C:\Users\TQ>
2020-11-19 15:29:05 10377 20
原创 如何解决:ERROR: Could not find a version that satisfies the requirement tensorflow==1.15
在这里,先和大家分享下我的自己遇到的一些问题:在进行这几步时,是相当顺利的,都没有报错:1、conda --version2、conda info --envs3、conda search --full-name python4、conda create --name tensorflow python=3.7但是,到了这一步就遇到各种错误:pip install tensorflow 或pip install --upgrade --ignore-installed tensorf
2020-11-18 14:42:20 25192 7
原创 TensorFlow(CPU版)安装多次总出错,如何在Windows环境下Anaconda中安装成功
TensorFlow安装1.检查Anaconda是否成功安装:conda --version2.检测目前安装了哪些环境:conda info --envs3.检查目前有哪些版本的python可以安装:conda search --full-name python4.安装不同版本的python:conda create --name tensorflow python=3.7(安装其他版本也行,因为我的python是3.7.3的所以选了这个)5.激活:activate tensorflow6.查看tensor
2020-11-18 13:38:22 3109
原创 如何从Jupyter notebook中把自己创建的文件复制出来
假设,我想把Matplotlib文件复制出去,那怎么找到该文件夹呢首先,打开Jupyter notebook,在Matplotlib文件夹里,创建一个python文件其次,输入代码输出文件存储路径import os print(os.path.abspath('.'))以下文件内容,即为自己想要复制的内容最后,把自己想要的文件复制出去即可...
2020-11-17 20:47:40 8871
原创 计算机考研复试常问问题计算机网络篇
计算机网络篇第一章、计算机网络体系结构1.计算机网络的主要功能?2.主机间的通信方式?3.电路交换,报文交换和分组交换的区别?4.计算机网络的主要性能指标?5.计算机网络提供的服务的三种分类?6.ISO/OSI参考模型和TCP/IP模型?7.端到端通信和点到点通信的区别?第一章、计算机网络体系结构快速唤起记忆知识框架1.计算机网络的主要功能?1、硬件资源共享。可以在全网范围内提供对处理资源、存储资源、输入输出资源等昂贵设备的共享,使用户节省投资,也便于集中管理和均衡分担负荷。2、软件资源共享。
2020-11-16 15:27:03 2806
原创 【全文翻译】ImageNet Classifification with Deep Convolutional Neural Networks
摘要--我们训练了一个大型的深度卷积神经网络,将ImageNet LSVRC-2010竞赛中的120万张高分辨率图像分类为1000种不同的类别。 在测试数据上,我们实现了前1个和前5个错误率分别为37.5%和17.0%,这比以前的最新技术要好得多。 该神经网络具有6000万个参数和65万个神经元,它由五个卷积层组成,其中一些跟在最大卷积层之后,还有三个完全连接的层,最后是1000路softmax。 为了使训练更快,我们使用了非饱和神经元和卷积运算的非常高效的GPU实现。 为了减少全连接层的过度拟合,我们采用
2020-11-15 20:13:27 1468
原创 深度学习的58个专业术语
激活函数(Activation Function)为了让神经网络能够学习复杂的决策边界(decision boundary),我们在其一些层应用一个非线性激活函数。最常用的函数包括 sigmoid、tanh、ReLU(Rectified Linear Unit 线性修正单元) 以及这些函数的变体。AdadeltaAdadelta 是一个基于梯度下降的学习算法,可以随时间调整适应每个参数的学习率。它是作为 Adagrad 的改进版提出的,它比超参数(hyperparameter)更敏感而且可能会太过严
2020-11-15 16:47:57 1491
原创 免费——离散数学(左孝凌)课后习题答案
离散数学(左孝凌)课后习题答案:链接: https://pan.baidu.com/s/1vbABzZ6oSkG5v8Y38F_7xQ 提取码:pqm5
2020-11-12 15:00:22 30033 48
原创 怎样安装pycharm
1、首先我们需要去下载pycharm的安装包,下载地址:http://www.jetbrains.com/pycharm/download/2、这里有两种版本,供大家下载,专业版和社区版,两者差别不大,如果只是学习的话,社区版就足够了,我就安装的社区版,直接点击download下载即可。(左边专业版,右边社区版)3、下载后得到一个安装文件,双击运行。4、点击【next】5、选择一个安装目录,这里我选择D:\pycharm\PyCharm 2019.3.3;一般软件尽量别安装在C盘。6、勾选
2020-11-04 16:29:07 261
原创 轻松上手Matplotlib__复式(多类别)条形图篇(有数字标注)
Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索 matplotlib 的常见用法。条形图:排列在工作表的列或行中的数据可以绘制到条形图中。特点:绘制连离散的数据,能够一眼可看出各个数据的大小,比较数据之间的差别。(统计)首先,我们分析下绘制柱状图代码:(基于Jupyter Notebook运行,Pycharm也可)from matplotlib import pyplot as plt#解决中文
2020-11-02 11:18:12 2629 2
原创 轻松上手Matplotlib__散点图篇
Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。这里将会探索 matplotlib 的常见用法。散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。特点: 判断变量之间是否存在数量关联趋势,展示离群点。(分布规律)首先,我们分析下绘制散点图代码:(基于Jupyter Notebook运行,Pycharm也可)from matplotlib import pyp
2020-10-30 16:33:02 585
广州大学近5年计算机考研真题
2020-11-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人