1059 Prime Factors (25分)
题目链接:PAT A 1059
题目大意:给出一个数n,范围在long int之内,要求输出它的质因子分解形式。
思路分析:对于任意一个数字n,它的质因子要么全部小于等于根号n,要么只有一个质因子大于根号n而其余质因子全部小于根号n,可以以此为思路进行求解。先求出100010以内的素数并把它们存放到数组中(int类型开根号大概是2的16次方,这个值是65536,所以我们只需要求100010以内的素数即可),之后遍历素数表中每个素数,如果该素数是n的因子,就记录在结构体数组中,并计算该素数的个数(计算方法是用n/=这个因子,直到余数不为0为止,详见代码)。如果遍历完素数表中的每一个数后n仍然不等于1,那最后的这个质因子就是n此时的值,添加进去即可。
注意点1:long int和int的取值范围都是-2147483648~2147483647
注意点2:考虑到2*3*5*7*11*13*17*19*23*29
就已经超过了int范围,所以结构体数组只要开到10就可以了。
注意点3:本题求素数表是用埃氏筛法去求解,比常规的求素数表方法时间复杂度要低(常规的是O(n*根号n),埃氏筛法是O(nloglogn))。
埃氏筛法的思路是:对于每一个素数,筛去它的所有倍数,剩下的数就都是素数了,初始时只需要给定2是素数即可。
AC代码:
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
const int maxn = 100010;
vector<int> prime; //素数表
bool isprime[100010] = {false}; //判断某个数是不是素数,false代表是素数
void find_prime() { //埃氏筛法求素数表
for(int i = 2; i < maxn; i++) { //注意循环条件不能写成i小于等于maxn
if(isprime[i] == false) { //是素数
prime.push_back(i);
for(int j = i * 2; j < maxn; j += i) //注意循环条件不能写成j小于等于maxn
isprime[j] = true; //倍数不是素数
}
}
}
struct factor{
int x, cnt; //质因子及其出现的次数
}fac[10];
int main() {
find_prime(); //先求素数表
int n, num = 0;
cin >> n;
if(n == 1) //特判
cout << "1=1";
else {
cout << n << "=";
int sqr = (int)sqrt(1.0 * n);
for(int i = 0; prime[i] <= sqr; i++) {
if(n % prime[i] == 0) { //是质因子
fac[num].x = prime[i];
fac[num].cnt = 0; //初始时该质因子个数为0
while(n % prime[i] == 0) {
fac[num].cnt++; //该质因子个数+1
n /= prime[i];
}
num++;//总质因子个数加一
}
if(n == 1) //除完直接退出循环,节省时间
break;
}
if(n != 1) { //无法被根号n以内的质因子除尽
fac[num].x = n;
fac[num++].cnt = 1;
}
}
for(int i = 0; i < num; i++) {
cout << fac[i].x;
if(fac[i].cnt != 1)
cout << "^" << fac[i].cnt;
if(i != num - 1)
cout << "*";
}
return 0;
}