Description
Luluxiu大魔王想到一道简单的求和问题。给定一个含有n个数的序列a1、a2、a3、…、an,luluxiu想知道这个序列中某些区间的和,所以luluxiu会提出m次的询问,每次询问给定两个下标i与j(1<=i<=j<=n),现在luluxiu要求你求出这个区间内的和s(s=ai+ai+1+ai+2+…+aj),如果你求出错误的答案或者速度太慢都将引发luluxiu的怒火从而被处死。
Input
首行输入两个正整数n和m(1<=n,m<=100000),n代表序列长度,m代表询问次数,接下来一行输入n个整数a1、a2、a3、…、an(1-231<=ai<=231-1),之后接下来有m行输入,每行输入两个正整数i和j(1<=i<=j<=n),i代表区间左端点,j代表区间右端点。(输入数据对于任意的i以及j都保证1-231<=s<=231-1)
Output
对于每次询问,输出对应的区间和s。
Sample Input
5 3
1 2 3 4 5
1 1
2 4
1 5
Sample Output
1
9
15
题解
对于给定n个数字区间求和问题,若是使用朴素做法,对于m次询问,每次遍历区间求和,其时间复杂度达到了O(n*m),会超时。所以可以使用前缀和进行预处理。什么是前缀和?前缀和即用数组sums储存前n个数的和,对于每次的询问区间[l,r],计算sums[r]-sums[l-1]就能得到答案,且此操作在O(1)时间复杂度内即可完成。此外,此题用线段树也能AC。
代码
#include<cstring>
#include<iostream>
#include<stdio.h>
using namespace std;
inline long long read(){
long long s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
int main(){
int n,m;
long long sum=0;
n=read();
m=read();
int num;
int sums[n+1];
memset(sums,0,sizeof(sums));
for(int i=1;i<=n;i++){
num=read();
sum+=num;
sums[i]=sum;
}
int left,right;
for(int i=1;i<=m;i++){
left=read();
right=read();
printf("%lld\n",sums[right]-sums[left-1]);
}
return 0;
}