week10:通过自定义数据集实现车牌识别任务实验记录

week10:通过自定义数据集实现车牌识别任务实验记录

Ⅰ Ⅰ Introduction:
  • 在之前的案例中,我们多是使用datasets.ImageFolder函数直接导入已经分类好的数据集形成Dataset,然后使用DataLoader加载Dataset,但是如果对无法分类的数据集,我们如何导入,并进行识别呢?
    本周将自定义一个MyDataset加载车牌数据集并完成车牌识别
  • 补充acc数据记录
Ⅱ Ⅱ Experiment:
  1. 数据准备与任务分析:

下载数据集,并通过transform调整图片尺寸,划分好训练集与测试集,本周的数据是车牌,并且需要设置参数来显示中文标签

    def text2vec(text):
        vector = np.zeros([label_name_len, char_set_len])
        for i, c in enumerate(text):
            idx = char_set.index(c)
            vector[i][idx] = 1.0
        return vector

    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

    data_dir = './015_licence_plate/'
    data_dir = pathlib.Path(data_dir)

    data_paths = list(data_dir.glob('*'))
    classeNames = [str(path).split("\\")[1].split("_")[1].split(".")[0] for path in data_paths]
    print(classeNames)

    data_paths = list(data_dir.glob('*'))
    data_paths_str = [str(path) for path in data_paths]
    print(data_paths_str)

    plt.figure(figsize=(14, 5))
    plt.suptitle("数据示例(K同学啊)", fontsize=15)

    for i in range(18):
        plt.subplot(3, 6, i + 1)

        # 显示图片
        images = plt.imread(data_paths_str[i])
        plt.imshow(images)

    plt.show()

    char_enum = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", \
                 "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "军", "使"]

    number = [str(i) for i in range(0, 10)]  # 0 到 9 的数字
    alphabet = [chr(i) for i in range(65, 91)]  # A 到 Z 的字母

    char_set = char_enum + number + alphabet
    char_set_len = len(char_set)
    label_name_len = len(classeNames[0])

    all_labels = [text2vec(i) for i in classeNames]

    total_datadir = './015_licence_plate/'

    # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])

    total_data = MyDataset(all_labels, data_paths_str, train_transforms)

    train_size = int(0.8 * len(total_data))
    test_size = len(total_data) - train_size
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=16,
                                               shuffle=True)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=16,
                                              shuffle=True)

    print("The number of images in a training set is: ", len(train_loader) * 16)
    print("The number of images in a test set is: ", len(test_loader) * 16)
    print("The number of batches per epoch is: ", len(train_loader))

    for X, y in test_loader:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break

如图,可以概览数据集及案例:
在这里插入图片描述
在这里插入图片描述

  1. 配置环境:
  • 语言环境:python 3.8
  • 编译器: pycharm
  • 深度学习环境:
    • torch==2.11
    • cuda12.1
    • torchvision==0.15.2a0
  1. 构建网络:
    这里构建两个模块,一个是用来预测的神经网络,另外一个是自定义的数据集:
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24 * 50 * 50, label_name_len * char_set_len)
        self.reshape = Reshape([label_name_len, char_set_len])

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(-1, 24 * 50 * 50)
        x = self.fc1(x)

        # 最终reshape
        x = self.reshape(x)

        return x


# 定义Reshape层
class Reshape(nn.Module):
    def __init__(self, shape):
        super(Reshape, self).__init__()
        self.shape = shape

    def forward(self, x):
        return x.view(x.size(0), *self.shape)
class MyDataset(data.Dataset):
    def __init__(self, all_labels, data_paths_str, transform):
        self.img_labels = all_labels  # 获取标签信息
        self.img_dir = data_paths_str  # 图像目录路径
        self.transform = transform  # 目标转换函数

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, index):
        image = Image.open(self.img_dir[index]).convert(
            'RGB')  # plt.imread(self.img_dir[index])  # 使用 torchvision.io.read_image 读取图像
        label = self.img_labels[index]  # 获取图像对应的标签

        if self.transform:
            image = self.transform(image)

        return image, label  # 返回图像和标签

通过直接打印和summary.summary(model, (3, 224, 224))可以看到网络结构如下:

Using cuda device
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=483, bias=True)
  (reshape): Reshape()
)
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 12, 220, 220]             912
       BatchNorm2d-2         [-1, 12, 220, 220]              24
            Conv2d-3         [-1, 12, 216, 216]           3,612
       BatchNorm2d-4         [-1, 12, 216, 216]              24
         MaxPool2d-5         [-1, 12, 108, 108]               0
            Conv2d-6         [-1, 24, 104, 104]           7,224
       BatchNorm2d-7         [-1, 24, 104, 104]              48
            Conv2d-8         [-1, 24, 100, 100]          14,424
       BatchNorm2d-9         [-1, 24, 100, 100]              48
        MaxPool2d-10           [-1, 24, 50, 50]               0
           Linear-11                  [-1, 483]      28,980,483
          Reshape-12                [-1, 7, 69]               0
================================================================
Total params: 29,006,799
Trainable params: 29,006,799
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 26.56
Params size (MB): 110.65
Estimated Total Size (MB): 137.79
----------------------------------------------------------------

  1. 训练模型:

设置优化器,损失函数,学习率等:

    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    loss_fn = nn.CrossEntropyLoss()  # 创建损失函数

编写主函数

      optimizer = torch.optim.Adam(model.parameters(),
                                 lr=1e-4,
                                 weight_decay=0.0001)

    loss_model = nn.CrossEntropyLoss()

    test_acc_list = []
    test_loss_list = []
    epochs = 30

    for t in range(epochs):
        print(f"Epoch {t + 1}\n-------------------------------")
        train(model, train_loader, loss_model, optimizer)
        test_acc, test_loss = test(model, test_loader, loss_model)
        test_acc_list.append(test_acc)
        test_loss_list.append(test_loss)
    print("Done!")

训练函数如下:

def train(model,train_loader,loss_model,optimizer):
    model=model.to(device)
    model.train()

    for i, (images, labels) in enumerate(train_loader, 0):
        images = Variable(images.to(device))
        labels = Variable(labels.to(device))

        optimizer.zero_grad()
        outputs = model(images)

        loss = loss_model(outputs, labels)
        loss.backward()
        optimizer.step()

        if i % 1000 == 0:
            print('[%5d] loss: %.3f' % (i, loss))
  1. 测试模型:

训练过程中,需要编写测试函数来做评估:

def test(model, test_loader, loss_model):
    size = len(test_loader.dataset)
    num_batches = len(test_loader)

    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in test_loader:
            X, y = X.to(device), y.to(device)
            pred = model(X)

            test_loss += loss_model(pred, y).item()

            # 计算准确率
            pred = pred.view(-1, 69)  # 将预测结果展平
            y = y.view(-1, 69)  # 将真实标签展平
            _, predicted = torch.max(pred, 1)
            _, target = torch.max(y, 1)
            correct += (predicted == target).sum().item()
    test_loss /= num_batches
    accuracy = correct / size
    print(f"Avg loss: {test_loss:>8f} \n")
    print(f"Accuracy: {accuracy:>8f}")
    return correct, test_loss

  1. 实验结果及可视化:

绘制实验结果的图像:

    x = [i for i in range(1, 31)]

    plt.plot(x, test_loss_list, label="Loss", alpha=0.8)

    plt.xlabel("Epoch")
    plt.ylabel("Loss")

    plt.legend()
    plt.show()

实验结果如下:
在这里插入图片描述

Ⅲ Ⅲ Conclusion:

本次实验是第一次比较具体的工程应用案例,让我对此类技术的强大有了极直观的感受,希望后续能够自己发掘应用任务,实现技术转化。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值