基于pytorch的MNIST数字识别实验

基于pytorch的MNIST数字识别实验

Ⅰ Ⅰ Introduction:
  • 本文为机器学习经典案例:基于mnist数据集的手写数字识别分类实验的学习记录。
  • 实验目标:
    • 了解什么是深度学习及其基本框架与流程
    • 了解pytorch及其部分常用的接口
    • 动手完成分类任务,学会将结果打印输出
Ⅱ Ⅱ Experiment:
  1. 数据准备与任务分析:
  • 本次实验是通过计算机视觉对手写数字进行分类,目标是尽可能的准确识别每一个数字图形
    为此,本次实验搭建CNN网络作为主要分类器,尽可能好的训练这个分类器是本次实验的主要目标之一。

  • 数据准备:
    本次实验选用数据mnist手写数字,通过torchvision中的dataset下载:

    train_ds = torchvision.datasets.MNIST('data',
                                        train=True,
                                        transform=torchvision.transforms.ToTensor(),
                                        download=True)
    
    test_ds  = torchvision.datasets.MNIST('data',
                                        train=False,
                                        transform=torchvision.transforms.ToTensor(),
                                        download=True)
    

    通过torch.utils.data.DataLoader来载入数据:

    batch_size = 32
    
    train_dl = torch.utils.data.DataLoader(train_ds, 
                                           batch_size=batch_size, 
                                           shuffle=True)
    
    test_dl  = torch.utils.data.DataLoader(test_ds, 
                                           batch_size=batch_size)
    

    至此,前期的准备工作已完成。

  1. 配置环境:
  • 实验环境:
    • 语言环境:python 3.8
    • 编译器: pycharm
    • 深度学习环境:
      • torch==2.11
      • cuda12.1
      • torchvision==0.15.2a0
  1. 构建网络:

    对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

网络代码:

   import torch.nn.functional as F
   import torch
   import torch.nn as nn

   num_classes = 10


   class Model(nn.Module):
      def __init__(self):
         super().__init__()
         self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
         self.pool1 = nn.MaxPool2d(2)
         self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
         self.pool2 = nn.MaxPool2d(2)

         self.fc1 = nn.Linear(1600, 64)
         self.fc2 = nn.Linear(64, num_classes)

      def forward(self, x):
         x = self.pool1(F.relu(self.conv1(x)))
         x = self.pool2(F.relu(self.conv2(x)))

         x = torch.flatten(x, start_dim=1)

         x = F.relu(self.fc1(x))
         x = self.fc2(x)

         return x

nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小

nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小

nn.ReLU为激活函数,使模型可以拟合非线性数据

nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)

nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

加载并打印模型:

>>>
from torchinfo import summary
model = Model().to(device)
summary(model)

>>>
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================
  1. 训练模型:
  • 首先需要设置超参数:
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
  • 然后编写训练函数,使用反向传播计算梯度,再通过优化器更新
def train(dataloader, model, loss_fn, optimizer, learn_rate=1e-2):
    """train model"""
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    train_loss, train_acc = 0, 0
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)

        pred = model(X)
        loss = loss_fn(pred, y)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

  1. 测试模型:

测试函数与训练函数大致相同,去掉优化器与梯度传播即可:

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss
  1. 实验结果及可视化:
    目标是尽可能提高在测试集上分类的准确率,即test_acc:
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

经过5轮训练,得到结果如下:

Epoch: 1, Train_acc:78.4%, Train_loss:0.751, Test_acc:93.5%,Test_loss:0.210
Epoch: 2, Train_acc:94.7%, Train_loss:0.174, Test_acc:96.1%,Test_loss:0.128
Epoch: 3, Train_acc:96.4%, Train_loss:0.116, Test_acc:97.5%,Test_loss:0.085
Epoch: 4, Train_acc:97.2%, Train_loss:0.092, Test_acc:97.9%,Test_loss:0.067
Epoch: 5, Train_acc:97.6%, Train_loss:0.078, Test_acc:98.2%,Test_loss:0.059
Done

通过以下代码对结果进行图绘:

plt.rcParams['font.sans-serif']    = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['figure.dpi']         = 100

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

Ⅲ Ⅲ Conclusion:
  1. 知识点归纳:

a. torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device='')

参数说明:

  • dataset (string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle (bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers (int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last (bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout (numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn (callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。(默认:None)

b. 一个神经网络程序可以用下图概括:
在这里插入图片描述

  1. 收获与总结:

在这次实验中,我使用了卷积神经网络(CNN)对 MNIST 手写数字数据集进行了分类。在测试集上,我获得了 98.1% 的准确率,而在训练集上的准确率为 97.7%。以下是我在这次实验中所获得的收获和总结:

  • 了解卷积神经网络:
    通过实验,我加深了对卷积神经网络的理解。我了解了卷积层、池化层和全连接层等基本组件,以及它们如何协同工作来提取特征并进行分类。
  • 数据预处理的重要性:
    在实验过程中,虽然本次实验没有过多的预处理,但我了解到对数据进行归一化、平衡和处理缺失值等操作,可以提高模型的性能和稳定性。
  • 超参数调优:
    不同的模型架构、学习率、批量大小等超参数的组合,对模型性能的影响是至关重要的。我发现对于不同的任务,合适的超参数组合可能有所不同,因此进行参数调优是非常重要的。
  • 模型评估:
    了解如何评估模型的性能,通过使用准确率、精确度、召回率等指标,能够更好地了解模型的优劣势,并找出改进的空间。
  • 29
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值