题目描述
解题思路
- (用Dictionary)用key-value键值对存储数字和出现的次数。
- ⭐(位运算)
代码实现
(Dictionary)
public class Solution {
public int SingleNumber(int[] nums) {
Dictionary<int,int> dic = new Dictionary<int,int>();
for(int i=0;i<nums.Length;i++)
{
if(!dic.ContainsKey(nums[i]))
dic.Add(nums[i],1);
else
dic[nums[i]]++;
}
int res=0;
foreach(KeyValuePair<int,int> a in dic)
{
if(a.Value==1)
res = a.Key;
}
return res;
}
}
(位运算)
如果没有时间复杂度和空间复杂度的限制,这道题有很多种解法,可能的解法有如下几种。
使用集合存储数字。遍历数组中的每个数字,如果集合中没有该数字,则将该数字加入集合,如果集合中已经有该数字,则将该数字从集合中删除,最后剩下的数字就是只出现一次的数字。
使用哈希表存储每个数字和该数字出现的次数。遍历数组即可得到每个数字出现的次数,并更新哈希表,最后遍历哈希表,得到只出现一次的数字。
使用集合存储数组中出现的所有数字,并计算数组中的元素之和。由于集合保证元素无重复,因此计算集合中的所有元素之和的两倍,即为每个元素出现两次的情况下的元素之和。由于数组中只有一个元素出现一次,其余元素都出现两次,因此用集合中的元素之和的两倍减去数组中的元素之和,剩下的数就是数组中只出现一次的数字。
上述三种解法都需要额外使用 O(n)O(n) 的空间,其中 nn
是数组长度。如果要求使用线性时间复杂度和常数空间复杂度,上述三种解法显然都不满足要求。那么,如何才能做到线性时间复杂度和常数空间复杂度呢?答案是使用位运算。对于这道题,可使用异或运算 \oplus⊕。异或运算有以下三个性质。
public class Solution {
public int SingleNumber(int[] nums) {
int ret = 0;
foreach (int e in nums) ret ^= e;
return ret;
}
}