最大公约数和最小公倍数

一、求最大公因数的三种方法:

最大公因数定义:
(最大公约数、最大公因子):指两个或多个整数共有约数中最大的一个。
在这里插入图片描述
最小公倍数定义:
两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。在这里插入图片描述

①辗转相除法(欧几里得算法):

用较大数除以较小数,再用除数继续除以余数求出新的余数,不停循环直到余数等于0,此时除数就是最大公约数。
在这里插入图片描述

int gcd(int a, int b)
{
	return a % b == 0 ? b : gcd(b, a%b);
}
int gcd(int x,int y)
{
	int z=y;
	while(x%y!=0)
	{
		z=x%y;
		x=y;
		y=z; 
	}
	return z;
}

c÷b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,

②更相减损术:

用较大数减去较小数,再不断用差减减数得到新的差(当差是负数时,就反过来减),不停循环直到减数和差相等为止,此时这个相等的数就是最大公约数。
在这里插入图片描述

int gcd(int a,int b)
{
	while(a!=b)
	{
		if(a>b)
		{
			a=a-b;
		}
		else
		{
			b=b-a;
		}
	}
	return a;
}

③穷举法:

从其中一个数字开始,依次递减,直到某个数除以两个数的余数都是0,此时这个数就是最大公约数。

int gcd(int x,int y)
{
	int t;
	for(t=x;;t--)
	{
		if(x%t==0 && y%t==0)
			break;
	}
	return 0;
}

二、求最小公倍数:

①公式:lcm=x*y/gcd

求两个数x和y的最小公倍数时, 最小公倍数=x*y/最大公约数。

②穷举法

int lcm(int x,int y)
{
 	if(x*y==0)
		return 0;
 	 int max = a > b ? a : b ;
 	 while(1)
 	 {
 	 	if(max%a==0 && max%b==0)
 	 		break;
 	 	max--;
	  }
	  return max;
}

部分内容借鉴博客:https://blog.csdn.net/chen_zan_yu_/article/details/82943306

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hudie.

不要打赏!不要打赏!不要打赏!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值