Redis 高级数据类型(七)


Redis的高级数据类型并不像五种常用的数据类型有明显的模型特征,它的存在主要是为了解决单一的业务。

1. BitMaps

1.1 BitMaps 介绍

在应用场景中,有一些数据只有两个属性,比如是否是学生,是否是党员等等,对于这些数据,最节约内存的方式就是用bit去记录,以是否是学生为例,1代表是学生,0代表不是学生。那么1000110就代表7个人中3个是学生,这就是BitMaps的存储需求。

  • bitmaps不是一个真实的数据结构,而是String类型上的一组面向bit操作的集合
  • BitMaps就是通过一个bit位来表示某个元素对应的值或者状态,其中的key就是对应元素本身
  • 可以把Bitmaps想象成是一串二进制数字,每个位置只存储0和1(某种状态),下标是Bitmaps的偏移量(offset)
  • 我们知道8个bit可以组成一个Byte,所以bitmaps本身会极大的节省储存空间。

1.2 BitMaps 数据类型的基础操作

  • 获取指定key对应偏移量上的bit值
getbit key offset   如果没有设置的话,默认是0
  • 设置指定key对应偏移量上的bit值,value只能是0或1
 setbit key offset value  偏移量很大的话,也能设置,但是前面要补0,比较耗时

1.3 BitMaps 类型的扩展操作

  • 对指定key按位进行交、并、非、异或操作,并将结果保存到destKey中
 bitop op destKey key1 [key2...] 

op:and(交)、or(并)、not(非)、xor(异或)

  • 统计指定key中1的数量
bitcount key [start end]

1.4 业务场景

电影网站

  • 统计每天有多少部电影被点播

给每部电影设置一个id,比如现在有五部电影,id是0-4,使用BitMaps统计,01101,就表示id为1、2、4的电影被点播过,id为0、3的电影没被点播过,统计1的数量,就可以知道有多少部电影被点播过,注意,BitMaps只能记录状态(是否被点播),不记录具体的值(一部电影被点播过多少次)

  • 统计每周/月/年有多少部电影被点播

统计每周的话,就让周一到周期末作为key,统计每天有多少部电影备点播过,然后将这些数据进行or运算,最后统计结果中1的个数就可以了。

  • 统计年度哪部电影没有被点播

2. HyperLogLog

2.1 HyperLogLog 介绍

HyperLogLog是用来做基数统计的,所谓基数统计,就是指一串数字中不重复的数字个数,如{1,2,1,2,3}的基数集就是{1,2,3},基数就是3,内部运用了LogLog算法。

2.2 HyperLogLog 类型的基本操作

  • 添加数据
 pfadd key element [element ...] 
  • 统计数据
 pfcount key [key ...]
  • 合并数据
 pfmerge destkey sourcekey [sourcekey...]

2.3 相关说明

  • 用于进行基数统计,不是集合,不保存数据,只记录数量而不是具体数据
  • 核心是基数估算算法,最终数值存在一定误差
  • 误差范围:基数估计的结果是一个带有 0.81% 标准错误的近似值
  • 耗空间极小,每个hyperloglog key占用了12K的内存用于标记基数
  • pfadd命令不是一次性分配12K内存使用,会随着基数的增加内存逐渐增大
  • Pfmerge命令合并后占用的存储空间为12K,无论合并之前数据量多少

2.4 业务场景

统计页面实时 UV 数、统计在线用户数、统计用户每天搜索不同词条的个数。而Bitmaps则用于判断某个用户是否访问过搜索页面。这是它们用法的不同。

3. GEO

3.1 GEO 介绍

GEO是redis中关于地理位置计算的高级数据类型,比如微信中的附近好友会展示好友离你的距离,这就是GEO的一个应用。

3.2 GEO 类型基本操作

  • 添加坐标点
 geoadd key longitude latitude member [longitude latitude member ...]  longitude(经度)latitude(纬度)
  • 获取坐标点
geopos key member [member ...]  自动转化成度分秒
  • 计算坐标点距离
 geodist key member1 member2 [unit](单位:m(默认)、km)  
  • 根据指定坐标求指定距离内的数据
georadius key longitude latitude radius m|km|ft|mi [withcoord] [withdist] [withhash] [count count] 
  • 根据指定点求指定距离内的数据
georadiusbymember key member radius m|km|ft|mi [withcoord] [withdist] [withhash] [count count] 
  • 获取对应点对应的hash值
geohash key member [member ...]

参考:
112节Redis入门到精通【黑马程序员】

如有不足之处,欢迎指正,谢谢!

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读