递归算法

1.简单递归定义

什么叫递归?(先定义一个比较简单的说法,为了理解,不一定对)

递归:无限调用自身这个函数,每次调用总会改动一个关键变量,直到这个关键变量达到边界的时候,不再调用。

 

2.递归与循环的区别于联系

相同点:
(1)都是通过控制一个变量的边界(或者多个),来改变多个变量为了得到所需要的值,而反复而执行的;
(2)都是按照预先设计好的推断实现某一个值求取;(请注意,在这里循环要更注重过程,而递归偏结果一点)

不同点:
(1)递归通常是逆向思维居多,“递”和“归”不一定容易发现(比较难以理解);而循环从开始条件到结束条件,包括中间循环变量,都需要表达出来(比较简洁明了)。

简单的来说就是:用循环能实现的,递归一般可以实现,但是能用递归实现的,循环不一定能。因为有些题目①只注重循环的结束条件和循环过程,而往往这个结束条件不易表达(也就是说用循环并不好写);②只注重循环的次数而不注重循环的开始条件和结束条件(这个循环更加无从下手了)。

汉诺塔问题”

如图,汉诺塔问题是指有三根杆子A,B,C。C杆上有若干碟子,把所有碟子从A杆上移到C杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面。求最少要移动多少次?

这里写图片描述

解:https://blog.csdn.net/shengxia1999/article/details/80649859

def move(n,a,b,c):   #n为圆盘数,a代表初始位圆柱,b代表过渡位圆柱,c代表目标位圆柱
	if n==1:
	    print(a,'-->',c)
	else:
	    move(n-1,a,c,b)   #将初始位的n-1个圆盘移动到过渡位,此时初始位为a,上一级函数的过渡位b即为本级的目标位,上级的目标位c为本级的过渡位
	    print(a,'-->',c)
	    move(n-1,b,a,c)   #将过渡位的n-1个圆盘移动到目标位,此时初始位为b,上一级函数的目标位c即为本级的目标位,上级的初始位a为本级的过渡位

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值