都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4
思路:结果由时间和位置两个状态决定,所有需要使用二维空间。
a[i][j]表示第i秒在j位置上接到的馅饼数量
dp[i][j]表示前i秒在j位置上最多能接到多少馅饼
因为每秒只能在周围三个位置接馅饼,所以状态就可以从上一秒的这三个位置转移过来。
即dp[i][j]=max(dp[i-1][j-1], dp[i-1][j], dp[i-1][j+1])+a[i][j]。j为0或者10的时候要特殊处理。
注意:t是从第一秒开始的,我刚开始的时候从第0秒算,然后一直wa,,,后来才发现的
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define inf 0x3f3f3f3f
const int N =1e5+10;
int a[N][15],dp[N][15];
int main()
{
int n;
while(~scanf("%d",&n) && n)
{
int maxt=0;
memset(dp,-inf,sizeof dp); //注意初始化
memset(a,0,sizeof a);
for(int i=1;i<=n;i++)
{
int x,t;
scanf("%d%d",&x,&t);
maxt=max(maxt,t);
a[t][x]++;
}
dp[0][5]=0; //只能从位置5开始
for(int i=1;i<=maxt;i++)
{
for(int j=0;j<=10;j++)
{
if(j==0)
dp[i][j]=max(dp[i-1][j],dp[i-1][j+1])+a[i][j];
else
dp[i][j]=max(dp[i-1][j-1],max(dp[i-1][j],dp[i-1][j+1]))+a[i][j];
}
}
int ans=0;
for(int i=0;i<=10;i++)
ans=max(ans,dp[maxt][i]);
cout<<ans<<endl;
}
return 0;
}