论文名称:《Gather-Excite: Exploiting Feature Context in
Convolutional Neural Networks》
论文地址:https://arxiv.org/pdf/1810.12348.pdf
文章目录
1 原理
虽然在卷积神经网络中使用自下而上的局部算子可以很好地匹配自然图像的某些统计特性,但也可能阻碍这些模型捕捉到上下文中的远距离特征相互作用。在这项工作中,我们提出了一种简单而轻量级的方法,以实现CNN中更好的上下文利用。我们通过引入一对算子来实现:gather
(聚集),它能够高效地从大范围的空间中汇聚特征响应;excite
(激发),它将汇聚的信息重新分配给局部特征。这些算子的成本低廉,无论是参数数量还是计算复杂度,都可以直接集成到现有架构中以提高其性能。在几个数据集上的实验证明