即插即用篇 | YOLOv8 引入 GatherExcite 注意力机制 | 《Gather-Excite: Exploiting Feature Context in Convolutional》

这篇博客介绍了如何在YOLOv8中集成GatherExcite注意力机制,该机制旨在改善卷积神经网络中上下文特征的利用。文章详细阐述了GatherExcite的工作原理,提供了源代码和模型yaml文件,以及添加方法。实验证明,这种方法可以提升模型性能,而无需增加额外的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

论文名称:《Gather-Excite: Exploiting Feature Context in
Convolutional Neural Networks》

论文地址:https://arxiv.org/pdf/1810.12348.pdf



1 原理

虽然在卷积神经网络中使用自下而上的局部算子可以很好地匹配自然图像的某些统计特性,但也可能阻碍这些模型捕捉到上下文中的远距离特征相互作用。在这项工作中,我们提出了一种简单而轻量级的方法,以实现CNN中更好的上下文利用。我们通过引入一对算子来实现:gather(聚集),它能够高效地从大范围的空间中汇聚特征响应;excite(激发),它将汇聚的信息重新分配给局部特征。这些算子的成本低廉,无论是参数数量还是计算复杂度,都可以直接集成到现有架构中以提高其性能。在几个数据集上的实验证明

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值