动态规划--公共子序列

公共子序列

给定序列
X = < x1, x2, … , xm >
Y = < y1, y2, … , yn >
求 X 和 Y 的最长公共子序列

输入:
1、 序列[]X={’ ‘,‘A’,‘B’,‘C’,‘B’,‘D’,‘A’,‘B’};
2、 序列[]Y= {’ ',‘B’,‘D’,‘C’,‘A’,‘B’,‘A’};
3、 空备忘录b[][],c[][]
输出:
1、 记录最优值的备忘录
2、 最长公共子序列

package 公共子序列;

public class 公共子序列 {
	public static int lcsLength(char []x,char []y,int[][]b) {
		int m=x.length-1;
		int n=y.length-1;
		int [][]c=new int [m+2][n+2];
		for(int i=1;i<=m;i++)c[i][0]=0;
		for(int i=1;i<=n;i++)c[0][i]=0;
		for(int i=1;i<=m;i++)
			for(int j=1;j<=n;j++)
			{
				if(x[i]==y[j])
				{
					c[i][j]=c[i-1][j-1]+1;
					b[i][j]=1;
				}
				else if(c[i-1][j]>=c[i][j-1])
				{
					c[i][j]=c[i-1][j];
					b[i][j]=2;
				}
				else
				{
					c[i][j]=c[i][j-1];
					b[i][j]=3;
				}
			}
		return c[m][n];
	}
	public static void lcs(int i,int j,char[]x,int [][]b) {
		if(i==0||j==0)return ;
		if(b[i][j]==1)
		{
			lcs(i-1,j-1,x,b);
			System.out.print(x[i]+" ");
		}
		else if(b[i][j]==2)lcs(i-1,j,x,b);
		else lcs(i,j-1,x,b);
	}
	public static void main(String[] args) {
		char []X={' ','A','B','C','B','D','A','B'};
		char []Y= {' ','B','D','C','A','B','A'};
		int [][]b=new int[8][7];
		lcsLength(X,Y,b);
		System.out.print("最长公共子序列为: ");
		lcs(7,6,X,b);
	}
}
最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列。 LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值