浅谈e-DCC缩点

        e-DCC就是边连通分量,指的是原图中一个极大的连通子图(该子图没有桥)
        e-DCC缩点,就是将同一个边连通分量内的点看作一个点,将桥当作边连通分量之间的边。
        e-DCC缩点首先需要求解所有的边连通分量。可以通过tarjan算法求解边连通分量。用成对变换的技巧处理双向边和重边问题,在tarjan中有两个值,dfn和low,dfn表示的是对图进行深度优先遍历时,首次遍历的时间戳。在通过对图进行深度优先遍历的时候会形成一颗搜索树,low表示的就是通过一条不在搜索树上的边能够回到的时间戳的最小值关于图的连通性问题,往往需要通过搜索树考虑
        缩点的求解:

  1. 求桥
    tarjan求桥,给dfn和low的值,递归更新low的值,如果在递归回溯后 dfn[x] < low[y](x是y的父节点),说明这个边就是一个桥了(子节点在不通过搜索树上的边的情况下无法返回到祖先节点)
  2. 通过对图的dfs求连通块确定边连通分量
    定义一个数组 dcc[x] 表示 x 所属的边连通分量,初始为0或-1(其实什么都行,0和-1是我的习惯,就是做一个区分)在dfs求连通块的时候,遍历所有的点,如果当前的点 dcc 值为初始值,就从这个点开始求连通块,遍历它的子节点,递归求解,遇到某一条边是 或者点的 dcc值已经被求解 就不用求解了
  3. 重新建图(缩点)
    遍历所有的边,如果这个边割边,将边的两个点所在的边连通分量连边。或者也可以遍历边的时候,通过找出边的两个端点,如果两个点不在同一个边连通分量内,就将两个边连通分量连边。
/**
 * Author : correct
 * e-DCC
 */
#include <bits/stdc++.h>
using namespace std;
const int N = 300100;
int head[N], nex[N * 4], to[N * 4], cnt;
int head1[N];
#define debug cout << "-----------------------------------------\n"
#define mem(a, b) memset(a, b, sizeof a)
int n, m;
int dfn[N], low[N], ti;
bool cut[N];
int e_dcc[N], num;
void add(int* h, int a, int b){
	++cnt;
	to[cnt] = b;
	nex[cnt] = h[a];
	h[a] = cnt;
}
void tarjan(int x, int ind){//  no multiple edges
	//tarjan 求割边
	dfn[x] = low[x] = ++ti;
	for (int i = head[x]; i; i = nex[i]){
		int y = to[i];
		if (!dfn[y]){
			tarjan(y, i);
			low[x] = min(low[x], low[y]);
			if (dfn[x] < low[y]){
				cut[i] = cut[i ^ 1] = 1;
			}
		}
		else if (ind != (i ^ 1))low[x] = min(low[x], dfn[y]);
	}
}
void dfs(int x){
	// 求边双连通分量
	// 方法:对原图求连通块,遇到割边continue
	e_dcc[x] = num;
	for (int i = head[x]; i; i = nex[i]){
		int y = to[i];
		if (e_dcc[y] || cut[i])continue;
		dfs(y);
	}
}
// 缩点建立新图:将每一个边双连通分量看作一个点,将割边看作双连通分量之间的边即可
void rebuild_map(){
	for (int i = 2; i <= cnt; i++){
		int x = to[i];
		int y = to[i ^ 1];
		if (e_dcc[x] == e_dcc[y])continue;
		add(head1, e_dcc[x], e_dcc[y]);
	}
}
int main()
{
#ifdef debug
	ios::sync_with_stdio(0);
	cnt = 1;
#endif
	cin >> n >> m;
	num = n + 1;
	for (int i = 0; i < m; i++){
		int a, b;
		cin >> a >> b;
		add(head, a, b), add(head, b, a);
	}
	for (int i = 1; i <= n; i++){
		if (!dfn[i]){
			tarjan(i, 0);
		}
	}
	for (int i = 1; i <= n; i++){
		if (!e_dcc[i]){
			++num;
			dfs(i);
		}
	}
	rebuild_map();
	return 0;
}

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Python中,可以使用多个库来实现Copula-DCC-GARCH模型的建模和分析,包括: 1. arch库:提供了实现GARCH模型的类和函数,可以方便地对金融资产的波动率进行建模和估计。 2. Copula库:提供了实现Copula函数的类和函数,包括t-copula等。 3. PyFlux库:提供了实现DCC-GARCH模型的类和函数,可以方便地对资产之间的相关性进行建模和估计。 下面是一个简单的示例代码,演示如何使用这些库来实现t-copula-dcc-garch模型: ```python import numpy as np import pandas as pd import arch from copulae1 import TCopula import pyflux as pf # 读取数据 df = pd.read_csv('data.csv', index_col=0) # 计算收益率 returns = df.pct_change().dropna() # 建立t-copula copula = TCopula(dim=len(returns.columns), df=3) # 估计copula参数 copula.fit(returns) # 建立DCC-GARCH模型 model = pf.DCC(returns, p=1, q=1) # 估计DCC-GARCH模型参数 model.fit() # 预测未来波动率 forecast = model.predict(horizon=10) # 计算条件分位数 q = copula.percentile(np.array([0.05, 0.95])) # 生成随机样本 simulated_data = copula.simulate(1000) # 输出结果 print('Copula参数:', copula.params) print('DCC-GARCH参数:', model.latent_variables) print('未来波动率预测:', forecast.head()) print('条件分位数:', q) print('随机样本:', simulated_data[:10]) ``` 在这个示例中,我们首先读取数据并计算收益率,然后使用t-copula估计资产之间的相关性,接着使用DCC-GARCH模型估计资产的波动率,并进行未来波动率预测、条件分位数计算和随机样本生成等操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值