九余数定理

一个数字 n 的每一位数字的和对 9 取余数,等于 n % 9

证明:(特别简单)

设一个数 n ,假设是两位数,(位数少方便),书写形式是 ab ,表示 a * 10 + b,那么,(a + b) % 9 = a % 9 + b % 9;

( a * 10 + b ) % 9 = ( a * 10 ) % 9 + b % 9;

(a * 10 ) % 9 = ( a % 9 ) * ( 10 % 9 ) = a % 9;

证毕

结论简单,但是可以很方便的解决一些问题

题目链接

这道题就是纯粹的一个九余数定理的结论,让求n ^ n的数字根,循环,每次乘以一个 n 即可。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

typedef long long ll;
ll n, t;
#define endl "\n"
int main()
{
#ifdef endl
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);
#endif
	while(cin >> n && n){
		ll res = 1;
		for(int i = 1; i <= n; i++){
			res *= n;
			res %= 9;
		}
		res == 0 ? cout << "9" << endl : cout << res << endl;
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值