一个数字 n 的每一位数字的和对 9 取余数,等于 n % 9
证明:(特别简单)
设一个数 n ,假设是两位数,(位数少方便),书写形式是 ab ,表示 a * 10 + b,那么,(a + b) % 9 = a % 9 + b % 9;
( a * 10 + b ) % 9 = ( a * 10 ) % 9 + b % 9;
(a * 10 ) % 9 = ( a % 9 ) * ( 10 % 9 ) = a % 9;
证毕
结论简单,但是可以很方便的解决一些问题
这道题就是纯粹的一个九余数定理的结论,让求n ^ n的数字根,循环,每次乘以一个 n 即可。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
ll n, t;
#define endl "\n"
int main()
{
#ifdef endl
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
#endif
while(cin >> n && n){
ll res = 1;
for(int i = 1; i <= n; i++){
res *= n;
res %= 9;
}
res == 0 ? cout << "9" << endl : cout << res << endl;
}
return 0;
}