题意:
给定一个长度为 n 的序列,共有 q 次操作,每次操作分为两种:1 p x 和 2 x
1 p x表示将第 p 个位置的值设为 x
2 x 表示将序列中小于 x 的值设为 x
解题思路:
只需要用一个线段树去维护区间的最小值即可,对于操作 1 ,进行一次单点修改即可,对于操作 2 ,每次查询区间,如果区间内的最小值小于 x ,则对区间内的值进行更新即可,依然可以使用标记下传的方式,对于不通的区间修改,每次标记我们选取最大的,在单点修改或者查询的过程中,用到了该处的值,就将标记下传即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, q;
const int maxn = 1e5 + 10;
struct p{
int l, r, mn, lazy;
} c[maxn * 8];
void build(int l, int r, int k){
c[k].l = l;
c[k].r = r;
if(l == r){
scanf("%d", &c[k].mn);
return;
}
int mid = (l + r) / 2;
build(l, mid, k * 2);
build(mid + 1, r, k * 2 + 1);
c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void down(int k){
if(c[k].lazy){
c[k * 2].lazy = max(c[k].lazy, c[k * 2].lazy);
c[k * 2 + 1].lazy = max(c[k].lazy, c[k * 2 + 1].lazy);
c[k * 2].mn = max(c[k * 2].mn, c[k].lazy);
c[k * 2 + 1].mn = max(c[k * 2 + 1].mn, c[k].lazy);
c[k].lazy = 0;
}
}
void update(int p, int x, int k){
if(c[k].l == c[k].r){
c[k].mn = x;
return;
}
down(k);
int mid = (c[k].l + c[k] .r) / 2;
if(p <= mid)update(p, x, k * 2);
else update(p, x, k * 2 + 1);
c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void update(int x, int k){
if(c[k].mn >= x)return;
c[k].mn = x;
c[k].lazy = max(c[k].lazy, x);
}
int query(int x, int k){
if(c[k].l == c[k].r)return c[k].mn;
down(k);
int mid = (c[k].l + c[k].r) / 2;
if(x <= mid)return query(x, k * 2);
return query(x, k * 2 + 1);
}
int main()
{
scanf("%d", &n);
build(1, n, 1);
scanf("%d", &q);
while (q--){
int op;
scanf("%d", &op);
if(op == 1){
int a, b;
scanf("%d %d", &a, &b);
update(a, b, 1);
}
else if(op == 2){
int a;
scanf("%d", &a);
update(a, 1);
}
}
for (int i = 1; i <= n; i++){
printf("%d ",query(i, 1));
}
return 0;
}
接下来这一段代码比较特殊,因为更新的时候,标记使用的是自身的标记,这样也可以解决问题,但是需要额外开辟空间,空间上有很大浪费,不建议使用。
标记下传的位置不同,应该位于函数调用的开头。
感谢网友提供的建议!
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, q;
const int maxn = 1e5 + 10;
struct p{
int l, r, mn, lazy;
} c[maxn * 16];
void build(int l, int r, int k){
c[k].l = l;
c[k].r = r;
if(l == r){
scanf("%d", &c[k].mn);
return;
}
int mid = (l + r) / 2;
build(l, mid, k * 2);
build(mid + 1, r, k * 2 + 1);
c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void down(int k){
if(c[k].lazy){
c[k * 2].lazy = max(c[k].lazy, c[k * 2].lazy);
c[k * 2 + 1].lazy = max(c[k].lazy, c[k * 2 + 1].lazy);
// c[k * 2].mn = max(c[k * 2].mn, c[k].lazy);
// c[k * 2 + 1].mn = max(c[k * 2 + 1].mn, c[k].lazy);
c[k].mn = max(c[k].mn, c[k].lazy);
c[k].lazy = 0;
}
}
void update(int p, int x, int k){
down(k);
if(c[k].l == c[k].r){
c[k].mn = x;
return;
}
// down(k);
int mid = (c[k].l + c[k] .r) / 2;
if(p <= mid)update(p, x, k * 2);
else update(p, x, k * 2 + 1);
c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void update(int x, int k){
down(k);
if(c[k].mn >= x)return;
// c[k].mn = x;
c[k].lazy = max(c[k].lazy, x);
}
int query(int x, int k){
down(k);
if(c[k].l == c[k].r)return c[k].mn;
int mid = (c[k].l + c[k].r) / 2;
if(x <= mid)return query(x, k * 2);
return query(x, k * 2 + 1);
}
int main()
{
scanf("%d", &n);
build(1, n, 1);
scanf("%d", &q);
while (q--){
int op;
scanf("%d", &op);
if(op == 1){
int a, b;
scanf("%d %d", &a, &b);
update(a, b, 1);
}
else if(op == 2){
int a;
scanf("%d", &a);
update(a, 1);
}
}
for (int i = 1; i <= n; i++){
printf("%d ",query(i, 1));
}
return 0;
}