codeforces round #576 div2 D Welfare State(线段树)

题目链接

题意:

给定一个长度为 n 的序列,共有 q 次操作,每次操作分为两种:1 p x 和 2 x

1 p x表示将第 p 个位置的值设为 x

2 x 表示将序列中小于 x 的值设为 x

解题思路:

只需要用一个线段树去维护区间的最小值即可,对于操作 1 ,进行一次单点修改即可,对于操作 2 ,每次查询区间,如果区间内的最小值小于 x ,则对区间内的值进行更新即可,依然可以使用标记下传的方式,对于不通的区间修改,每次标记我们选取最大的,在单点修改或者查询的过程中,用到了该处的值,就将标记下传即可

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, q;
const int maxn = 1e5 + 10;
struct p{
	int l, r, mn, lazy;
} c[maxn * 8];
void build(int l, int r, int k){
	c[k].l = l;
	c[k].r = r;
	if(l == r){
		scanf("%d", &c[k].mn);
		return;
	}
	int mid = (l + r) / 2;
	build(l, mid, k * 2);
	build(mid + 1, r, k * 2 + 1);
	c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void down(int k){
	if(c[k].lazy){
		c[k * 2].lazy = max(c[k].lazy, c[k * 2].lazy);
		c[k * 2 + 1].lazy = max(c[k].lazy, c[k * 2 + 1].lazy);
		c[k * 2].mn = max(c[k * 2].mn, c[k].lazy);
		c[k * 2 + 1].mn = max(c[k * 2 + 1].mn, c[k].lazy);
		c[k].lazy = 0;
	}
}
void update(int p, int x, int k){
	if(c[k].l == c[k].r){
		c[k].mn = x;
		return;
	}
	down(k);
	int mid = (c[k].l + c[k] .r) / 2;
	if(p <= mid)update(p, x, k * 2);
	else update(p, x, k * 2 + 1);
	c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void update(int x, int k){
	if(c[k].mn >= x)return;
	c[k].mn = x;
	c[k].lazy = max(c[k].lazy, x);
}
int query(int x, int k){
	if(c[k].l == c[k].r)return c[k].mn;
	down(k);
	int mid = (c[k].l + c[k].r) / 2;
	if(x <= mid)return query(x, k * 2);
	return query(x, k * 2 + 1);
}
int main()
{
	scanf("%d", &n);
	build(1, n, 1);
	scanf("%d", &q);
	while (q--){
		int op;
		scanf("%d", &op);
		if(op == 1){
			int a, b;
			scanf("%d %d", &a, &b);
			update(a, b, 1);
		}
		else if(op == 2){
			int a;
			scanf("%d", &a);
			update(a, 1);
		}
	}
	for (int i = 1; i <= n; i++){
		printf("%d ",query(i, 1));
	}
	return 0;
}

接下来这一段代码比较特殊,因为更新的时候,标记使用的是自身的标记,这样也可以解决问题,但是需要额外开辟空间,空间上有很大浪费,不建议使用。 

标记下传的位置不同,应该位于函数调用的开头。

感谢网友提供的建议!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, q;
const int maxn = 1e5 + 10;
struct p{
	int l, r, mn, lazy;
} c[maxn * 16];
void build(int l, int r, int k){
	c[k].l = l;
	c[k].r = r;
	if(l == r){
		scanf("%d", &c[k].mn);
		return;
	}
	int mid = (l + r) / 2;
	build(l, mid, k * 2);
	build(mid + 1, r, k * 2 + 1);
	c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void down(int k){
	if(c[k].lazy){
		c[k * 2].lazy = max(c[k].lazy, c[k * 2].lazy);
		c[k * 2 + 1].lazy = max(c[k].lazy, c[k * 2 + 1].lazy);
//		c[k * 2].mn = max(c[k * 2].mn, c[k].lazy);
//		c[k * 2 + 1].mn = max(c[k * 2 + 1].mn, c[k].lazy);
		c[k].mn = max(c[k].mn, c[k].lazy);
		c[k].lazy = 0;
	}
}
void update(int p, int x, int k){
	down(k);
	if(c[k].l == c[k].r){
		c[k].mn = x;
		return;
	}
//	down(k);
	int mid = (c[k].l + c[k] .r) / 2;
	if(p <= mid)update(p, x, k * 2);
	else update(p, x, k * 2 + 1);
	c[k].mn = min(c[k * 2].mn, c[k * 2 + 1].mn);
}
void update(int x, int k){
	down(k);
	if(c[k].mn >= x)return;
//	c[k].mn = x;
	c[k].lazy = max(c[k].lazy, x);
}
int query(int x, int k){
	down(k);
	if(c[k].l == c[k].r)return c[k].mn;
	
	int mid = (c[k].l + c[k].r) / 2;
	if(x <= mid)return query(x, k * 2);
	return query(x, k * 2 + 1);
}
int main()
{
	scanf("%d", &n);
	build(1, n, 1);
	scanf("%d", &q);
	while (q--){
		int op;
		scanf("%d", &op);
		if(op == 1){
			int a, b;
			scanf("%d %d", &a, &b);
			update(a, b, 1);
		}
		else if(op == 2){
			int a;
			scanf("%d", &a);
			update(a, 1);
		}
	}
	for (int i = 1; i <= n; i++){
		printf("%d ",query(i, 1));
	}
	return 0;
}

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值