2019蓝桥杯真题平方序列(填空题) C语言/C++

文章讲述了如何使用优化的算法寻找两个正整数X和Y,使2019<X<Y且2019^2,X^2,Y^2构成等差数列,目标是求X+Y的最小值。通过调整X和Y的值,利用等差数列性质和向上取整函数,减少了时间复杂度,最终在C语言环境下解决问题。
摘要由CSDN通过智能技术生成

题目描述
本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。

小明想找到两个正整数 X 和 Y,满足2019<X<Y;2019^2, X^2, Y^2组成等差数列。
请你求出在所有可能的解中,X+Y 的最小值是多少?

运行限制
最大运行时间:1s
最大运行内存: 128M
所需变量

int a = 2019;//由于是填空题,我直接把2019赋值给a了

int x = 2020;//这是为了满足条件x比a大

int y = 2021;//满足条件y大于x也大于a

首先我们拿到这个题的时候,我们的第一感觉就是很难,而却算法所耗费的时间肯定很大,因为我们要不断的去尝试x和y同时满足!
那么我们的第一想法就是每次让x+1,然后也让y+1!仔细想想是不对的,这样肯定会不满足时间要求,时间复杂度太高了
因此我们想到一个更好的方法!
首先我们分析题目,我们要找的数要满足等差数列!
对于等差数列的性质就是第二个数(即x)与第一个数(a)的差值等于第三个数(y)与第二个数(x)的差值
用数学公式表示就是y*y-x*x = x*x - a*a

得到这个后,我们就可以明白了,当x+1,y不用直接+1,而是可以直接取向上取整(根号(2*x*x-a*a))
代码如下:

if(y < sqrt(2*x*x-2019*2019)){
      y = ceil(sqrt(2*x*x-2019*2019));
      }

如果对于y变化过大,那么当我们需要调整x的时候,我们就是(向上取整(开根号((y*y+a*a)/2)))
代码如下:

if(y > sqrt(2*x*x-2019*2019)){
      x = ceil(sqrt((y*y+2019*2019)/2));
      }

当然啦,终止条件就是满足等差数列性质,即y*y ==(2*x*x-2019*2019)我们就跳出循环!
该算法本人认为比较优,如果有更好的想法,欢迎q我!
完整代码如下(编译器是dev,语言是C语言):

#include <iostream>
#include<math.h>
using namespace std;
int main()
{
  int a = 2019,x = 2020,y = 2021;
  while(true){
    if(y*y ==(2*x*x-2019*2019)){
      break;
    }else if(y > sqrt(2*x*x-2019*2019)){
      x = ceil(sqrt((y*y+2019*2019)/2));
    }else if(y < sqrt(2*x*x-2019*2019)){
      y = ceil(sqrt(2*x*x-2019*2019));
    }
  }
  cout<<x+y<<endl;
  return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值