稀疏学习、稀疏表示、稀疏自编码神经网络、字典学习、主成分分析PCA、奇异值分解SVD 等概念的梳理,以及常用的特征降维方法
关于稀疏
稀疏编码 Sparse Coding 与字典学习
定义变量:
- 样本集用Y表示(M×N),M表示样本数,N表示样本属性个数
- 字典矩阵用D表示(M×K)
- 稀疏矩阵用X表示(K×N)
第 i 个原始数据 Yi 的稀疏表示 Xi :
南大周志华老师写的《机器学习》这本书上原文:“为普通稠密表达的样本找到合适的字典,将样本转化为合适的稀疏表达形式,从而使学习任务得以简化,模型复杂度得以降低,通常称为‘字典学习’(dictionary
learning),亦称‘稀疏编码’(sparse coding)”块内容。
为了求出D,需要求解以下优化问题:
求解方法通常用 K-SVD ,具体过程见参考文献:字典学习和K-SVD
延伸阅读: 稀疏表示
其应用场景待补充,目前的理解:只有在数据压缩、通讯领域比较有用,因为数据大部分都是0,可以用一