稀疏学习、稀疏表示、稀疏自编码神经网络、字典学习、主成分分析PCA、奇异值分解SVD 等概念的梳理,以及常用的特征降维方法

稀疏学习、稀疏表示、稀疏自编码神经网络、字典学习、主成分分析PCA、奇异值分解SVD 等概念的梳理,以及常用的特征降维方法

关于稀疏

稀疏编码 Sparse Coding 与字典学习

定义变量:

  • 样本集用Y表示(M×N),M表示样本数,N表示样本属性个数
  • 字典矩阵用D表示(M×K)
  • 稀疏矩阵用X表示(K×N)

第 i 个原始数据 Yi 的稀疏表示 Xi :在这里插入图片描述

南大周志华老师写的《机器学习》这本书上原文:“为普通稠密表达的样本找到合适的字典,将样本转化为合适的稀疏表达形式,从而使学习任务得以简化,模型复杂度得以降低,通常称为‘字典学习’(dictionary
learning),亦称‘稀疏编码’(sparse coding)
”块内容。

为了求出D,需要求解以下优化问题:
在这里插入图片描述
求解方法通常用 K-SVD ,具体过程见参考文献:字典学习和K-SVD
在这里插入图片描述

延伸阅读: 稀疏表示

其应用场景待补充,目前的理解:只有在数据压缩、通讯领域比较有用,因为数据大部分都是0,可以用一

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值