分数化简通分:最大公约数与最小公倍数

本文介绍了分数化简和通分的过程,重点讲解了如何利用欧几里德算法求最大公约数(gcd)。通过gcd简化分数,当分子或分母为0时,gcd取1。还探讨了如何求最小公倍数(lcm)以及处理多个数的最大公约数和最小公倍数的递归算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 化简

1、求最大公约数

原理:欧几里德算法(辗转相除法)
定理:两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。最大公约数缩写为gcd。
gcd(a, b) = gcd(b, a mod b)(前提条件是假设a > b 且 r = a mod b, r 不为0)
最好的写法如下:
long long gcd(long long a, long long b)
{return b == 0 ? a : gcd(b, a % b);}
//如果a<b 会自动交换顺序;

2、对suma /sumb 化简

if (sumb== 0) {cout << “Inf”; return 0;}
if (suma == 0) { cout << 0; return 0 ;}
//或者如果分子 或分母==0 则 让最大公约数为1,这时除以公约数不改变他们各自的值‘
gcdvalue = (suma == 0 || sumb == 0) ? 1 : gcd(abs(suma), abs(sumb));
sumb = sumb / gcdvalue;
suma = suma / gcdvalue;

通分
1、求最小公倍数
在已经算出整数a、b的最大公约数的基础上,我们可以通过下面的公式来求出它们的最小公倍数
lcm= (a * b)/gcdvalue;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值