01背包问题及其三个变形

Report of the knapsack algorithm(4 types)

1.1
//knapsack,
/question: 有N件物品和一个容量为V 的背包。放入第i件物品耗费的空间是Ci,得到的价值是vi。求解将哪些物品装入背包可使价值总和最大。/

#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXN 100
using namespace std;

int ci[MAXN],vi[MAXN];
int dp[MAXN][MAXN]; //全局变量自动赋值为0 


int main()
{
	int N,V;
	cin>>N>>V; 
	for(int i=1;i<=N;i++)
	{
		cin>>ci[i]>>vi[i];
	 } 
	 
	 for(int i=1;i<=N;i++)//从第一个物品开始求解 
	 {
	 	for(int j=0;j<=V;j++)//循环容量 
	 	{
	 		dp[i][j]=dp[i-1][j];//即使是没有大于当前的容量花费,但是作为打表传递,前面的容量的的位置也要传递过来 
	 		
	 		if(j>=ci[i])
	 		{
			 
	 			dp[i][j]=max(dp[i-1][j],dp[i-1][j-ci[i]]+vi[i]);
	 		}
			 
		 }
	 }
	 
	 cout<<dp[N][V];//因为有传递的效果,所以最后结尾的最大值一定为全局的最优解 
	
	
	return 0;
 }

输入测试样本:
5 10 N V
5 6 cost value
5 7
2 8
8 1
5 9
输出结果:17 //下面为打表测试,横坐标为容量,纵坐标为物品数量值

在这里插入图片描述

1.2 上述空间仍然可以改进,可以缩小为一维数组此时算法时间复杂度为O(nV),空间复杂度为O(V),

//01knapsack,
/question: 有N件物品和一个容量为V 的背包。放入第i件物品耗费的空间是Ci,得到的价值是vi。求解将哪些物品装入背包可使价值总和最大。/
//改进算法,缩小空间

#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXN 100
using namespace std;

int ci[MAXN],vi[MAXN];
int dp[MAXN]; //全局变量自动赋值为0 


int main()
{
   int N,V;
   cin>>N>>V; 
   for(int i=1;i<=N;i++)
   {
   	cin>>ci[i]>>vi[i];
    } 
    
    for(int i=1;i<=N;i++)//从第一个物品开始求解 //对于dp[i][],每次只需要用到dp[i-1][];故可以考虑直接存在一维数组中 
    {
    	for(int j=V;j>=ci[i];j--)//循环容量 但是一维的数组则需要从右向左循环,因为前面的数据会被覆盖 
    	{ 	              	 
    			dp[j]=max(dp[j],dp[j-ci[i]]+vi[i]);		 
   	 }
    }
    
    cout<<dp[V];//因为有传递的效果,所以最后结尾的最大值一定为全局的最优解 
   
   
   return 0;
}

同上述数据:
结果相同

在这里插入图片描述

  1. 在上述的基础上要求恰好满包
    //01knapsack,
    /question: 有N件物品和一个容量为V 的背包。放入第i件物品耗费的空间是Ci,得到的价值是vi。求解将哪些物品装入背包可使价值总和最大。/
    //现在要求为满包情况,即刚好将背包塞满
#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXN 100
#define NINF 1<<31

using namespace std;

int ci[MAXN],vi[MAXN];



int main()
{
   //int M; 
   //cin>>M;
   //int record[MAXN];
   //int k=0;
    
   int N,V;
   cin>>N>>V; 
   
   int dp[MAXN]; //除了dp[0]为0之外其他的均为负无穷
   //while(M--)
   //{
   
   for(int i=1;i<=V;i++)
   {
   	dp[i]=NINF;   //除了容量为0其他的容量下,价值均为无穷小 
    } 
    dp[0]=0;//dp[0]即容量为0 时,价值为0 
    
   for(int i=1;i<=N;i++)
   {
   	cin>>ci[i]>>vi[i];
    } 
    
    
    for(int i=1;i<=N;i++)//从第一个物品开始求解 //对于dp[i][],每次只需要用到dp[i-1][];故可以考虑直接存在一维数组中 
    {
    	
    	for(int j=V;j>=ci[i];j--)//循环容量 但是一维的数组则需要从右向左循环,因为前面的数据会被覆盖 
    	{ 	              	 
    			dp[j]=max(dp[j],dp[j-ci[i]]+vi[i]);		 
   	 }
    }

     if(dp[V]<0) dp[V]=0; // 当为无穷小时,则赋值为0
     
   //  record[k++]=dp[V];
      
    cout<<dp[V];//dp[x]即容量为x时的最大值,恰好装满。即容量为V 时的值 
   
 //   }
   
 //  for(int i=0;i<k;i++)
 //  {
//   	cout<<record[i]<<endl;
   //}
   
   
   
   return 0;
}

样例:
在这里插入图片描述
输出结果:在这里插入图片描述

3.在1的基础上,背包中最多放m个物品,求其最大值
//01knapsack,
/question: 有N件物品和一个容量为V 的背包。放入第i件物品耗费的空间是Ci,得到的价值是vi。求解将哪些物品装入背包可使价值总和最大。/
//背包中最多放m件物品

#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXN 100
using namespace std;

int ci[MAXN],vi[MAXN];
int dp[MAXN][MAXN]; //全局变量自动赋值为0 
int k[MAXN][MAXN]; //记录每个表的位置时其已经选了的个数。 

int main()
{
	int N,V;
	int m;//增加约束:最多放m件物品 
	cin>>N>>V; 
	cin>>m;
	
	for(int i=1;i<=N;i++)
	{
		cin>>ci[i]>>vi[i];
	 } 
	 
	 
	 for(int i=1;i<=N;i++)//从第一个物品开始求解 
	 {	
	 	for(int j=0;j<=V;j++)//循环容量 
	 	{
	 		dp[i][j]=dp[i-1][j];//即使是没有大于当前的容量花费,但是作为打表传递,前面的容量的的位置也要传递过来 
	 		
	 		if(j>=ci[i])
	 		{
			 
	 			dp[i][j]=max(dp[i-1][j],dp[i-1][j-ci[i]]+vi[i]);
	 		}
	 		///
	 	    
	 		if(dp[i][j] != dp[i-1][j])//如果当前第i件最大值不等于第i-1件,则表明加入了第i件,K+1; 
			 {
			 	k[i][j]=k[i-1][j-ci[i]]+1; 
			 }
			 else{     
			 	k[i][j]=k[i-1][j]; 
			 }
		 }
	 }
	 
	 
	  for(int i=1;i<=N;i++)
	 {
	 	for(int j=0;j<=V;j++)
	 	{
	 	 cout<<dp[i][j]<<' ';	
		 }
		 cout<<endl;
	  } 
	  cout<<endl;
	  /
	    for(int i=1;i<=N;i++)
	 {
	 	for(int j=0;j<=V;j++)
	 	{
	 	 cout<<k[i][j]<<' ';	
		 }
		 cout<<endl;
	  } 
	 cout<<endl;
	 
	 
	 
	 
	 int maxn=dp[0][0];
	 for(int i=1;i<=N;i++)
	 {
	 	for(int j=0;j<=V;j++)
	 	{
	 	  if(maxn<dp[i][j] && k[i][j]<=m)
		   {
		   	swap(maxn,dp[i][j]);
		   }	
		 }
	  } 
	  
	  
	 cout<<maxn;
	
	
	return 0;
 }

//核心思想,再利用一个二维数组记录当前所在位置已经加入了几个数,也通过递推关系求
//也可以将两者均化为一维数组,类似上述1.2

输入数据:
5 10 1 物品数 背包容量 最多m个
5 6 花费 价值
5 7
2 8
8 1
5 9

输出结果:
在这里插入图片描述

输入数据:
5 10 2 物品数 背包容量 最多m个
5 6 花费 价值
5 7
2 8
8 1
5 9

输出结果:在这里插入图片描述

4.在1的基础上,分为两个背包存储,求解最大值

//01knapsack,
/question: 有N件物品和一个容量为V 的背包。放入第i件物品耗费的空间是Ci,得到的价值是vi。求解将哪些物品装入背包可使价值总和最大。/
//现在分为2个背包V1 , V2
//利用二维数组DP,但是此时的二维中没有个数i,而是利用V1 V2进行递推

#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXN 100
using namespace std;

int ci[MAXN],vi[MAXN];
int dp[MAXN][MAXN]; //全局变量自动赋值为0 


int main()
{
   int N,V1,V2;
   cin>>N>>V1>>V2; 
   
   //int res=0;
   
   for(int i=1;i<=N;i++)
   {
   	cin>>ci[i]>>vi[i];
    } 
    
    for(int i=1;i<=N;i++)//从第一个物品开始求解   //实则是1.2的改编,1.2将dp降到了一维,只要循环容量V,此处将容量V1,V2弄成二维进行递推 
    {
    	for(int j=V1;j>=0;j--)//循环容量    ci[i]
    	{
    		for(int k=V2;k>=0;k--) 
    		{
    			
    			if(j>=ci[i] && k>=ci[i])
    			{
    				dp[j][k]=max(dp[j][k],max(dp[j-ci[i]][k]+vi[i],dp[j][k-ci[i]]+vi[i])) ;
   			 }else if(j>=ci[i])
   			 {
   			 	dp[j][k]=max(dp[j][k],dp[j-ci[i]][k]+vi[i]);
   			 }else if(k>=ci[i])
    			{
    				dp[j][k]=max(dp[j][k],dp[j][k-ci[i]]+vi[i]);
    				
   			 }
    			
//	 			if(res<dp[j][k])
//	 			{
//	 				res=dp[j][k];
//				 }
    			
//	 		dp[i][j]=dp[i-1][j];//即使是没有大于当前的容量花费,但是作为打表传递,前面的容量的的位置也要传递过来 
//	 		
//	 		if(j>=ci[i])
//	 		{
//			 
//	 			dp[i][j]=max(dp[i-1][j],dp[i-1][j-ci[i]]+vi[i]);
//	 		}
//	 					
    			
   		 }		 
   	 }
    }
    
    cout<<dp[V1][V2]<<endl;//因为有传递的效果,所以最后结尾的最大值一定为全局的最优解 
    //cout<<res<<endl;
   
   
   return 0;
}

输入数据:
5 10 5 个数 第一个背包的大小 第二个背包的大小
5 6 花费 价值
5 7
2 8
8 1
5 9

输出结果:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值