基于显著性的无人机多光谱图像语义杂草检测与分类

8 篇文章 2 订阅 ¥89.90 ¥99.00
本文提出了一种新的基于显著性的杂草检测模型,使用PC/BC-DIM神经网络进行无监督学习,无需训练数据,通过多光谱图像提取显著性图进行杂草分类。该模型在CPU上运行,降低了计算成本,平均精度达94.38%,在杂草检测和计算效率上优于现有方法。
摘要由CSDN通过智能技术生成


新词1:栽培杂草控制
解释1:栽培杂草控制是指在农田或园艺区域中采取一系列措施来减少或消除杂草对作物生长的竞争。
新词2:显著图
解释2:显著图(Salient Map)是指通过图像处理和分析技术生成的一幅图像,用于表示原始图像中像素的显著性程度。显著图可以帮助我们理解和关注图像中最重要、最引人注目的区域。这个显著图反映了图像中每个像素的显著性程度,即其对于区分作物和杂草的重要程度。
根据PC/BC-DIM方法的描述,显著部分指的是显著图中被认为是重要、引人注目的部分,即与作物相关的区域。而非显著部分则指显著图中被认为是不显著、不重要的部分,即与杂草相关的区域。通过对显著图进行阈值化或其他分割算法,可以将显著部分和非显著部分分离开来,从而将杂草作为非显著部分进行进一步的处理或移除。

摘要

杂草泛滥对农作物造成损害,限制了农业生产。传统的杂草控制方法依赖于农药,这需要劳动密集的做法。提出了利用多光谱图像进行杂草检测的各种方法。基于机器视觉的杂草检测方法需要提取大量的多光谱纹理特征,增加了计算量。度神经网络用于基于像素的杂草分类,但这些基于深度神经网络的杂草检测方法的缺点是需要大量的图像数据集进行网络训练,尤其对于多光谱图像,需要耗费大量的时间和资源。这些方法还需要一个基于图形处理器(GPU)的系统,因为计算成本很高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕竟是shy哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值