- 博客(252)
- 资源 (22)
- 问答 (6)
- 收藏
- 关注
原创 if check_dir and directory is not None and not os.path.isdir(directory): raise RuntimeEr
【代码】if check_dir and directory is not None and not os.path.isdir(directory): raise RuntimeEr。
2025-05-26 22:06:17
144
原创 windows安装WS,实测可行
导出 Ubuntu-22.04 为 .tar 文件。导入 Ubuntu-22.04 到 F 盘。查看哪些ubuntu环境在运行。启动这个wsl,默认是root。赋予新用户 sudo 权限。修改默认登录用户为普通用户。停止当前的Ubuntu。
2025-05-20 21:39:30
332
原创 Cycleresearcher:通过自动化评审改进自动化研究
迄今为止,整个科学发现过程自动化的挑战在很大程度上仍未解决,特别是在生成和改进符合同行评审工作高标准的研究成果方面。此外,很少有工作涉及迭代反馈的整合,这对保持学术的健全性和新奇至关重要。当前的模型往往难以适应整个研究阶段,突出了它们在进行全面、多步骤科学发现的能力方面的差距。科学过程的核心是提交、同行评审和改进的迭代循环–这是一种维持学术工作质量和完整性的既定机制。来自审稿人和同行的反馈在这一周期中发挥着关键作用,提供了有助于研究人员改进工作并提高其严谨性和影响力的见解。从这一循环过程中得到启发,我们提出
2025-05-04 00:00:23
949
原创 doccano导出的jsonl格式数据如何进行命名实体识别,使用HMM、CRF、Bi-LSTM、Bi-LSTM-CRF、bert、ernie、roberta、albert进行命名实体识别
2、直接运行即可(config里选取模型)(需要提前下载一些预训练文件)1、上面的bems文件拿过来,然后运行这个文件,生成scv文件。3、将JSON Lines格式的数据转换为BMES标注格式。1、划分训练集、验证集、测试集(721),再合并相关文件。6、再次验证一下处理后的数据还有没有这种错误。模型训练:python main.py。模型测试:python test.py。训练:python train.py。7、数据就处理好了,可以进行使用了。测试:python test.py。
2024-12-11 19:29:40
470
原创 conda虚拟环境迁移
1、先克隆一下虚拟环境:已有虚拟环境路径为A,生成的虚拟环境为B,生成的新的环境的位置在anaconda的安装路径下,4、将压缩包放到目标主机的同版本Anaconda路径下的envs文件夹内,解压。注意:需要相同版本的Anaconda。2、安装conda-forge和conda-pack工具,打包和解包。
2024-11-07 14:47:54
795
原创 使用labelme生成mask数据集(亲测可行)
3、打开labelme.exe文件,直接加载图片,然后编辑多边形,就是mask的位置。5、将json文件转换为mask图像,命令行运行:python test.py。4、画好mask了,保存为json文件,记住这个文件夹路径。2、安装一下anaconda,百度一下直接安装就行。替换一下里面的路径即可,然后就生成了mask图像了。1、下载label.exe文件。
2024-08-03 19:14:12
892
原创 基于循环神经网络长短时记忆(RNN-LSTM)的大豆土壤水分预测模型的建立
递归神经网络(RNN)在处理时序数据(如时间序列数据)时是非常有效的。然而,早期的神经网络由简单的算法组成,在训练过程中不断遇到梯度消失等问题;这导致RNNs缺乏实用性的长序列。为此,提出了长短时记忆方法(LSTM)来解决长序列的消失梯度问题。为了解决斜坡的拥塞和消光问题,LSTM增加了一个步骤,决定移动到下一个时间点时是否传递隐含层处理过的结果值;即通过每个栅极打开或关闭输入和输出,通过解决斜坡拥挤和消光问题来补充长期依赖关系。
2023-12-16 23:49:50
1343
1
原创 CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below
*解决:**在运行代码最上面加上这几句。
2023-12-04 10:59:16
2755
1
原创 YOLOv8如何输出COCO指标
3、将自己的YOLO格式数据集和标签转化为json格式,类别也需要改一下,下面只需要修改图片路径和你的标签路径就行,然后保存路径也可以改改。2、再正常python val --各种参数 --save_json=True,这一步的作用是要生成自己模型预测的json文件。4、修改你自己的数据集json文件和预测的json文件,就可以输出了。1、先正常python train 一个模型。5、生成结果图,实测可行。
2023-12-02 11:29:09
4599
33
原创 对 Vision Transformers 及其基于 CNN-Transformer 的变体的综述
Vision transformers已经成为卷积神经网络(CNNs)的可能替代品,在各种计算机视觉应用中很受欢迎。这些变形金刚能够专注于图像中的全局关系,提供了强大的学习能力。然而,它们可能会受到有限的泛化,因为它们不倾向于在图像中建模局部相关性。最近,在视觉变压器中出现了混合卷积运算和自我注意机制,以利用局部和全局图像表示。这些混合视觉变压器,也称为cnn -Transformer结构,在视觉应用中显示出了显著的效果。鉴于混合视觉变压器数量的迅速增长,对这些混合架构进行分类和解释已成为必要。
2023-12-01 22:01:03
2474
1
原创 细粒度视觉分类的注意内核编码网络
在本文中,我们提出了一种新的深度学习体系结构,名为注意核编码网络(AKEN),用于细粒度图像分类,如图2所示。AKEN将上一卷积层的特征特征图聚合为一个整体的特征表示。具体来说,我们建议应用傅里叶嵌入将特征特征图编码成图像的整体表示。傅里叶嵌入利用核函数强大的非线性学习能力,可以捕获更多有区别的特征进行分类,从而得到高质量的特征表示。图二。这是我们提出的注意核心编码网络(AKEN)的流程图。在对原始图像进行特征提取后,应用级联注意(Cas-Attention)模块对有区别的区域进行高亮显示。
2023-12-01 16:13:19
515
原创 EfficientViT:具有级联群体注意力的内存高效Transformer
不断提高的精度是以增加模型尺寸和计算开销为代价的。为了解决这个问题,在本文中,我们探索如何更快地使用视觉变压器,寻找设计高效变压器架构的原则。基于当前流行的视觉转换器DeiT[69]和Swin[44],我们系统地分析了影响模型推理速度的三个主要因素,包括内存访问、计算冗余和参数使用。特别地,我们发现变压器模型的速度通常是内存限制的。换句话说,内存访问延迟阻碍了GPU/ cpu计算能力的充分利用[21,32,72],从而对变压器运行速度产生了严重的负面影响[15,31]。
2023-11-27 22:42:43
916
1
原创 EfficientViT:高分辨率密集预测的多尺度线性注意
我们建议用轻量级 ReLU 线性注意力 [12] 代替低效的 softmax 注意力,以获得全局感受野。通过利用矩阵乘法的关联属性,ReLU 线性注意力可以将计算复杂度从二次降低到线性,同时保留功能。此外,它避免了像softmax这样的硬件效率低下的操作,使其更适合硬件部署。然而,由于缺乏局部信息提取和多尺度学习能力,单独的ReLU线性注意力能力有限。因此,我们提出通过卷积增强ReLU线性注意力,并引入多尺度线性注意力模块来解决ReLU线性注意力的容量限制。
2023-11-27 18:22:08
1080
原创 Da-transunet:将空间和通道双重关注与Transformer u-net相结合用于医学图像分割
在本文中,我们创新性地提出了一种新的图像分割方法,该方法是在TransUNet的体系结构中将da块与Transformer集成在一起。针对特定图像位置和通道特征的da块被进一步集成到跳跃连接中,以提高模型的性能。我们的实验结果,经过广泛的消融研究的验证,表明模型的性能在不同的数据集,特别是Synapse数据集的显著改善。我们的研究揭示了da块在增强Transformer的特征提取能力和全局信息保持方面的潜力。数据块和Transformer的集成在不产生冗余的情况下,大大提高了模型的性能。
2023-11-24 16:46:51
4190
2
原创 邻里注意Transformer(CVPR2023)
我们提出邻居注意力(NA),第一个有效和可伸缩的滑动窗口的视觉注意机制。NA是一种像素级的操作,将自我注意定位到最近的邻近像素上,因此与SA(自注意力)的二次复杂度相比,具有线性的时间和空间复杂度。与Swin Transformer的窗口自我注意(WSA)不同,滑动窗口模式允许NA的接受域在不需要额外像素位移的情况下增长,并保持平移均方差。
2023-11-13 15:27:51
2095
原创 使用双动态令牌混合器学习全局和局部动态以进行视觉识别
感应偏置(Inductive bias)是指对学习任务的假设和推断进行约束或偏好的先验知识或假设。它是为了帮助学习算法在未见过的数据上做出合理的预测而引入的一种偏置。CNN假设输入的局部数据存在相关性。
2023-11-10 14:32:44
1739
3
原创 农业4.0中麦田的精确杂草检测:实现技术、方法和研究挑战的综述
杂草严重威胁着小麦的安全生产。它们是导致小麦产量和品质下降的重要因素。目前的麦田杂草防治方法主要依赖于化学防治。由于无法准确确定杂草的位置,导致农药使用过量,利用率低,造成严重污染。随着农艺操作向农业4.0的发展,麦田杂草控制技术也越来越精确和智能化。麦田杂草检测技术和方法为提高麦田除草的准确性和效率提供了基础。本研究首先综述了麦田中常见的杂草种类和分布规律,并对当前杂草检测技术和发展进行了深入分析。重点介绍了在麦田杂草检测中的光谱、图像、成像光谱、深度信息和多模态信息融合等方面的研究现状。
2023-11-09 22:23:48
541
原创 利用无人机图像进行大豆田杂草检测的实例分割方法
作物杂草检测是精确农业的一个新领域,它可以区分理想和不理想的作物。准确、高效的杂草检测与识别是精确杂草治理的基础。本研究提出一种结合可见颜色指数与基于编码器和解码器架构的实例分割方法的新方法。该方法解决了杂草和大豆作物密集分布中杂草的准确检测和分割的难题。色彩指数的设计是为了突出植物和土壤之间的对比,以减轻光照和背景的影响,而将ResNet101_v和DSASPP集成到编解码框架中,可以增强多尺度语义信息的提取能力,提高杂草patch边界分割的准确性。
2023-11-09 12:20:44
696
2
原创 精确杂草控制植物检测模型的改进推广
植物检测模型缺乏普遍性是阻碍实现自主杂草控制系统的主要挑战之一。本文研究了训练和测试数据集分布对植物检测模型泛化误差的影响,并使用增量训练来减小泛化误差。在本文中,我们使用YOLOv3目标探测器作为植物检测模型。为了训练模型并测试其泛化特性,我们使用了一个广泛的数据集,包括25个子数据集,采样自多个不同的地理区域、土壤类型、耕作条件,包含杂草、背景植被、相机质量和光照变化。
2023-11-09 11:05:17
634
进制转换,汇编课程设计,大作业
2020-12-27
Asymmetric Student-Teacher Networks for Industrial AD
2023-07-16
仪器仪表管理系统sql server2012 数据库课程设计
2020-12-25
FTP 协议的实现
2021-06-05
Servlet的应用,使用MVC模式实现如下功能
2021-05-24
数据结构课程设计之矩阵
2021-01-13
汇编课程设计-进制转换
2020-12-27
计算机视觉缺陷检测方向如何学习?
2023-07-10
计算机视觉研一选方向
2023-04-04
想搭建私人博客或私人网站。
2021-05-26
姐姐人美心善,实锤了。相当good👍🏻
2021-05-10
为什么今天的访问量还没有更新,1点多了
2021-04-25
普通本科,物联网专业能找什么工作?
2020-12-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人