【论文】微软小冰论文——第六代小冰架构解析

本文介绍了微软小冰的架构,包括分层决策机制、情感计算模块和核心聊天模块。小冰通过对话管理器、情感理解和个性化生成进行交互。其对话策略基于启发式规则,话题管理采用推荐系统。情感计算模块涉及上下文理解、用户理解及个性生成。核心聊天模块中的对话生成利用GRU-RNN模型,结合人工回复集确保交互质量。此外,小冰具备图片/视频评论和诗歌创作等特殊技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《The Design and Implementation of XiaoIce, an Empathetic Social Chatbot》(2018, Li Zhou,Microsoft)奔波本篇论文描述的是第六代小冰系统。宏观为主,细节部分有列参考论文。


第一篇论文就是本文,也就是小冰的架构。剩下的论文是文章中提及的比较重要的一些细节技术论文,属于扩展部分。
在这里插入图片描述

在这里插入图片描述
本文先介绍微软小冰,再一点点解析小冰的架构。

在这里插入图片描述在这里插入图片描述在这里插入图片描述论文用到的一个评价指标是CPS,即单轮对话的平均长度。其实这个指标很好理解,如果一个人对机器人有感情上的寄托,则人会更愿意与AI进行对话,单次对话轮数越多,可以在一定程度上表明用户愿意和机器人进行交互的程度。如果你认为这个机器人“懂”你,那你肯定会多和它聊几句吖。
小冰的设计是模拟人的,所以设置了IQ+EQ+个性。IQ可以解释为记忆力、推断能力、理解能力等;EQ是为了让AI更亲近于人,其中最重要的一点就是同理心,即,你能不能站在别人的角度去考虑用户的感受。
微信上个月把小冰的功能关了,所以找了微博上的小冰进行测试。还是会有很多问题,但是在聊天机器人里面,小冰真的算是业界顶梁柱了。小冰介绍的第三张PPT是和微博小冰的对话截图,尽管软处理比较多,但是过多的手工规则还是经常会显得对话僵硬。(今天下午发布第七代小冰,据说会提高很多,值得期待吖!)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值