树
通过前面的学习,我们主要学习了几种线性的数据结构,根据其实现方式,我们可以大致将其分为两种:基于数组的实现与基于链表的实现。正如我们看到,就其效率而言,二者各有长短。
前者允许我们通过下标或秩,在常数时间内找到目标元素;然而对其修改时(插入或删除)则需要线性时间。
后者允许我们借助引用或位置对象,在常数时间内插入或删除对象;但是为了找出特定次序的元素,我们却不得不花费线性的时间。
而树这种结构会在同时优化静态以及动态的操作。
有根树
从图论的角度看,树等价于连通无环图。树由一组顶点以及联接与其间的若干条边组成。在计算机科学中,往往会指定特定顶点作为根(root)
。在指定其根节点之后,我们称之为有根树,在程序实现上,我们也更多将顶点称作节点(node)。
下面是有根树的逻辑图:
深度与层次
沿每个节点v到根r的唯一通路所经过边的数目,称作v的深度(depth),记作depth(v)。特别的,根节点的深度depth(r)=0.
祖先、后代与子数
任意节点v在通往树根沿途所经过的每一个节点都是其祖先,v是它们的后代,特别的,v的祖先/后代包括其本身,而v本身以外的祖先/后代称作真祖先/真后代。v的孩子总数,称作其度数或度(degree),无孩子的节点称作叶节点。v所有的后代及其之间的联边称作子树(subtree),
高度
树T中所有节点深度最大值称作该树的高度(height)。推而广之,任一节点v所对应子树subtree(v)的高度,亦称作该节点的高度。
二叉树
二叉树中每一个节点的度数均不超过2,因此在二叉树中,同意父节点的孩子都可以左、右相互区分——此时,亦称作有序二叉树。特别的不含一度节点的二叉树称为真二叉树。
二叉树的描述
对于二叉树的描述,我们采用长子+兄弟的手法:在树中任意非叶节点都有唯一的“长子”,而且从该“长子”出发,可按照先约定或指定的次序遍历所有孩子节点,为每一个节点设置两个指针,分别指向其“长子”和下一“兄弟”。现在将这两个指针分别与二叉树节点的左、右孩子指针统一对应起来,则可将原有序多叉树转换为常规二叉树。