向量x的L2范数归一化,就是向量x的L2范数为1时得到的新向量x撇

本文介绍了向量的L2范数归一化,即通过除以向量的L2范数将向量长度标准化为1的过程。这一操作在各种数学和计算机科学领域中都有应用,如数据预处理、机器学习模型的特征缩放等。理解并正确使用L2范数归一化有助于提高算法的性能和效率。
摘要由CSDN通过智能技术生成

任何向量X的L2范数归一化,就是向量中每个元素除以整个向量的L2范数,得到新的向量x撇

向量x的L2范数是一个概念,再进一步使得其L2范数归一化,建立x到x撇的映射,使得x撇得L2范数为1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值