距离矩阵的求解,补充中...

本文探讨了在机器学习中如何计算距离矩阵,它是许多算法如聚类和分类的基础。通过使用Python库,如NumPy和Scikit-Learn,可以有效地实现这一过程。了解如何正确地计算和处理距离矩阵对于提升模型性能至关重要。
摘要由CSDN通过智能技术生成

# https://blog.csdn.net/lllfor/article/details/117747757?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522165741172216781647588955%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=165741172216781647588955&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_click~default-2-117747757-null-null.142^v32^pc_rank_34,185^v2^control&utm_term=%E5%8D%8F%E6%96%B9%E5%B7%AE%E7%9F%A9%E9%98%B5&spm=1018.2226.3001.4187
#matlab最后除以行向量维数
#也可以除以(行向量维数-1)

import numpy as np



#https://blog.csdn.net/LoveCarpenter/article/details/85048291 距离矩阵

#N个样本,每个样本的维数是d
#矩阵N-d自身行向量之间的距离矩阵计算,产生N*N维矩阵,每个行向量与自己与其他行向量的距离,对应元素相减后的平方和,再开方
import numpy as np 
import numpy.linalg as la #和线性代数相关的库
#1,双重for循环
# 行向量
X=np.arange(15).reshape(3,5)
# [[ 0  1  2  3  4]
#  [ 5  6  7  8  9]
#  [10 11 12 13 14]]
#距离矩阵
# [[ 0.         11.18033989 22.360
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值