完全背包
题目链接/文章讲解:代码随想录
视频讲解:带你学透完全背包问题! 和 01 背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibili
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// 创建一个Scanner对象,用于从标准输入读取数据
Scanner sc = new Scanner(System.in);
// 读取物品的数量N
int N = sc.nextInt();
// 读取背包的容量bagSize
int bagSize = sc.nextInt();
// 创建一个数组来存储每个物品的重量
int[] weight = new int[N];
// 创建一个数组来存储每个物品的价值
int[] value = new int[N];
// 读取每个物品的重量和价值
for (int i = 0; i < N; i++) {
weight[i] = sc.nextInt();
value[i] = sc.nextInt();
}
// 创建一个数组dp,用于存储在不同背包容量下的最大价值
// dp[j]表示背包容量为j时的最大价值
int[] dp = new int[bagSize + 1];
// 动态规划求解背包问题
for (int i = 0; i < N; i++) {
// 从当前物品的重量开始,遍历到背包的最大容量
for (int j = weight[i]; j <= bagSize; j++) {
// 更新dp[j],取当前dp[j]和放入当前物品后的价值的最大值
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
// 输出背包容量为bagSize时的最大价值
System.out.println(dp[bagSize]);
}
}
518. 零钱兑换 II
题目链接/文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换 II_哔哩哔哩_bilibili
class Solution {
public int change(int amount, int[] coins) {
// 创建一个数组 dp,用于存储不同金额的组合数
// dp[i] 表示组成金额 i 的不同硬币组合的数量
int[] dp = new int[amount + 1];
// 初始化 dp[0] 为 1,表示组成金额 0 的方法只有一种,即不使用任何硬币
dp[0] = 1;
// 遍历每种硬币
for (int i = 0; i < coins.length; i++) {
// 从当前硬币的面值开始,更新 dp 数组
// j 表示当前要组成的金额
for (int j = coins[i]; j <= amount; j++) {
// 更新 dp[j],增加当前硬币 coins[i] 的组合方式
// dp[j - coins[i]] 表示使用当前硬币后的剩余金额的组合数
dp[j] += dp[j - coins[i]];
}
}
// 返回组成目标金额 amount 的不同组合数
return dp[amount];
}
}
377. 组合总和 Ⅳ
题目链接/文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和 IV_哔哩哔哩_bilibili
class Solution {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1; // 初始条件:目标值为0时,只有一种组合方式(什么都不选)
for (int j = 1; j <= target; j++) {
for (int i = 0; i < nums.length; i++) {
if (j >= nums[i]) {
dp[j] += dp[j - nums[i]];
}
}
}
return dp[target];
}
}