【代码随想录Day36】动态规划Part05

完全背包

题目链接/文章讲解:代码随想录
视频讲解:带你学透完全背包问题! 和 01 背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibili

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        // 创建一个Scanner对象,用于从标准输入读取数据
        Scanner sc = new Scanner(System.in);

        // 读取物品的数量N
        int N = sc.nextInt();

        // 读取背包的容量bagSize
        int bagSize = sc.nextInt();

        // 创建一个数组来存储每个物品的重量
        int[] weight = new int[N];

        // 创建一个数组来存储每个物品的价值
        int[] value = new int[N];

        // 读取每个物品的重量和价值
        for (int i = 0; i < N; i++) {
            weight[i] = sc.nextInt();
            value[i] = sc.nextInt();
        }

        // 创建一个数组dp,用于存储在不同背包容量下的最大价值
        // dp[j]表示背包容量为j时的最大价值
        int[] dp = new int[bagSize + 1];

        // 动态规划求解背包问题
        for (int i = 0; i < N; i++) {
            // 从当前物品的重量开始,遍历到背包的最大容量
            for (int j = weight[i]; j <= bagSize; j++) {
                // 更新dp[j],取当前dp[j]和放入当前物品后的价值的最大值
                dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
            }
        }

        // 输出背包容量为bagSize时的最大价值
        System.out.println(dp[bagSize]);
    }
}

518. 零钱兑换 II

题目链接/文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换 II_哔哩哔哩_bilibili

class Solution {
    public int change(int amount, int[] coins) {
        // 创建一个数组 dp,用于存储不同金额的组合数
        // dp[i] 表示组成金额 i 的不同硬币组合的数量
        int[] dp = new int[amount + 1];

        // 初始化 dp[0] 为 1,表示组成金额 0 的方法只有一种,即不使用任何硬币
        dp[0] = 1;

        // 遍历每种硬币
        for (int i = 0; i < coins.length; i++) {
            // 从当前硬币的面值开始,更新 dp 数组
            // j 表示当前要组成的金额
            for (int j = coins[i]; j <= amount; j++) {
                // 更新 dp[j],增加当前硬币 coins[i] 的组合方式
                // dp[j - coins[i]] 表示使用当前硬币后的剩余金额的组合数
                dp[j] += dp[j - coins[i]];
            }
        }

        // 返回组成目标金额 amount 的不同组合数
        return dp[amount];
    }
}

377. 组合总和 Ⅳ

题目链接/文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和 IV_哔哩哔哩_bilibili

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1; // 初始条件:目标值为0时,只有一种组合方式(什么都不选)

        for (int j = 1; j <= target; j++) {
            for (int i = 0; i < nums.length; i++) {
                if (j >= nums[i]) {
                    dp[j] += dp[j - nums[i]];
                }
            }
        }

        return dp[target];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值