【代码随想录Day38】动态规划Part07

198.打家劫舍

题目链接/文章讲解:代码随想录
视频讲解:动态规划,偷不偷这个房间呢?| LeetCode:198.打家劫舍_哔哩哔哩_bilibili

class Solution {
    public int rob(int[] nums) {
        int n = nums.length;
        // 特殊情况处理
        if (n == 0)
            return 0;
        if (n == 1)
            return nums[0];
        if (n == 2)
            return Math.max(nums[0], nums[1]);

        int[] dp = new int[n + 1];
        dp[0] = 0; // dp[0]表示不偷任何房子的最大金额
        dp[1] = nums[0]; // dp[1]表示只偷第一个房子的最大金额

        for (int i = 2; i <= n; i++) {
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);
        }

        return dp[n]; // 返回偷取所有房子中的最大金额
    }
}

213.打家劫舍 II

题目链接/文章讲解:代码随想录
视频讲解:动态规划,房间连成环了那还偷不偷呢?| LeetCode:213.打家劫舍 II_哔哩哔哩_bilibili

class Solution {
    public int rob(int[] nums) {
        int n = nums.length;

        // 特殊情况处理
        if (n == 0)
            return 0;
        if (n == 1)
            return nums[0];
        if (n == 2)
            return Math.max(nums[0], nums[1]);

        // 定义一个方法来计算一维情况下的最大偷取金额
        return Math.max(robLinear(Arrays.copyOfRange(nums, 0, n - 1)), // 偷取第一个房子,不偷最后一个
                robLinear(Arrays.copyOfRange(nums, 1, n))); // 不偷第一个房子,偷取最后一个
    }

    private int robLinear(int[] nums) {
        int n = nums.length;
        if (n == 0)
            return 0;
        if (n == 1)
            return nums[0];

        int[] dp = new int[n + 1];
        dp[0] = 0;
        dp[1] = nums[0];

        for (int i = 2; i <= n; i++) {
            dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i - 1]);
        }

        return dp[n];
    }
}

337.打家劫舍 III

题目链接/文章讲解:代码随想录
视频讲解:动态规划,房间连成树了,偷不偷呢?| LeetCode:337.打家劫舍 3_哔哩哔哩_bilibili

class Solution {
    public int rob(TreeNode root) {
        int[] result = dfs(root);
        return Math.max(result[0], result[1]);
    }

    private int[] dfs(TreeNode node) {
        if (node == null) {
            return new int[2]; // 返回 {0, 0},表示偷和不偷的金额都为0
        }

        int[] left = dfs(node.left);   // 左子树的结果
        int[] right = dfs(node.right); // 右子树的结果

        // dp[0]表示偷取当前节点的最大金额,dp[1]表示不偷取当前节点的最大金额
        int[] dp = new int[2];
        dp[0] = node.val + left[1] + right[1]; // 偷当前节点,左右子节点不能偷
        dp[1] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]); // 不偷当前节点,左右子节点可以选择偷或不偷

        return dp;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值