数据结构与算法之二分查找法的总结

本文介绍了二分查找算法,包括其适用条件、工作原理和复杂度分析。通过递归和非递归两种方式展示了二分查找的实现,并通过示例代码解释了算法过程。二分查找在有序序列中查找元素,具有较高的效率,最优复杂度为O(1),最坏复杂度为O(logn)。
摘要由CSDN通过智能技术生成

二分查找也叫做折半查找。二分查找的条件:①是一个有序序列 ②是一个顺序表。
比如有序的列表:[1,2,3,5,6,7,8,9]

二分查找的复杂度:
最优复杂度:O(1)
最坏复杂度:O(logn)

算法思想:
给定一个序列,查找序列中是否有元素a,查找的方法是:将序列折半,找到中间位置的数值mid,将该数值和a进行比较,比a大,则在左边的序列中找a是否存在,方法还是折半查找,如果mid比a小,那么在中间值右边中的序列中找a是否存在,方法也还是折半查找。可以看到上面有部分重复的功能,就是折半查找,这块可以使用递归,也可以不使用递归。下面会给出两个例子分别介绍这两种方法:

例1:递归实现:

def binary_find(alist,item):
    n = len(alist)
    #递归结束条件
    if n == 0:
        return False
    mid = n//2
    if alist[mid] == item:
        return True
    elif alist[mid] > item:
        return binary_find(alist[:mid],item)
    else:
        return binary_find(alist[mid+1:],item)

l = [1,2,9,34,999]
re = binary_find(l,22)
print(re)
re = binary_find(l,999)
print(re)

运行结果:

False
True

例2:非递归实现

def binary_find2(alist,item):
    n = len(alist)
    start = 0
    end = n-1
    while start <= end:  #这里要注意等于不能少
        mid = (end + start)//2
        if alist[mid] == item:
            return True
        elif alist[mid] > item:
            end = mid - 1
        else:
            start = mid + 1
    return False

l = [1,2,9,34,999]
re = binary_find2(l,22)
print(re)
re = binary_find2(l,999)
print(re)

运行结果:

False
True

复杂度分析:
可以看到上面的最优的复杂度就是正好中间的mid值就是我们要查找的值,复杂度为O(1),最坏复杂度就是:logn

其实如果不用二分法查找,使用for循环也是可以的,但是如果数据很大,那么查找速度很慢,for循环查找的最优复杂度为O(1),最坏复杂度为O(n),而我们的二分法查找最坏复杂度是O(logn),所以可以看到复杂度有所降低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如梦@_@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值