列主元Gauss消元法求解线性方程组的MATLAB实现

目录
  1. 顺序高斯消去法求解线性方程组的MATLAB实现
  2. 列主元Gauss消元法求解线性方程组的MATLAB实现
一、简介

MATLAB实现列主元Gauss消去法求解线性方程组,并与不列主元的Gauss消去法比较,最后对数值结果进行分析。

二、代码
function [Solution_matrix]=GaussElimination_Pivot(Augmented_matrix)
% 2020-5-18 臻orz
% inputs:
%   Augmented_matrix:增广矩阵,为n*(n+1)维矩阵
% outputs:
%   Solution_matrix:计算的解,为n*1维矩阵

%initialize
[row,col]=size(Augmented_matrix);
Solution_matrix=zeros(row,1);

%判定输入矩阵是否符合要求
if row~=col-1
    disp('请输入n*(n+1)维矩阵');
else
    for ii = 1:row-1
        %找寻主元
        max = ii;
        for jj = ii+1:row
            if abs(Augmented_matrix(jj,ii)) > abs(Augmented_matrix(max,ii))
                max = jj;
            end
        end
        Augmented_matrix([ii,max],:) = Augmented_matrix([max,ii],:);
        if Augmented_matrix(ii,ii) == 0
            disp(['第',num2str(ii),'个主元素为零']);
            return;
        end
        %开始消元
        for jj = ii+1:row
            Augmented_matrix(jj,:) = Augmented_matrix(jj,:)-...
                Augmented_matrix(jj,ii)/Augmented_matrix(ii,ii)*Augmented_matrix(ii,:);
        end
    end
    %消元完毕,开始回代
    if Augmented_matrix(row,row)==0
        disp(['第',num2str(row),'个主元素为零']);
        return;
    end
    Solution_matrix(row)=Augmented_matrix(row,col)/Augmented_matrix(row,col-1);
    for ii=row-1:-1:1
        Solution_matrix(ii)=(Augmented_matrix(ii,col)...
            -Augmented_matrix(ii,1:row)*Solution_matrix)/Augmented_matrix(ii,ii);
    end
end
end
三、数值结果分析

数值结果分析

Emax = zeros(4,1);
index = 0;
for ii = [5,10,14,20]
    index = index+1;
    eval(['epsilon=1e-' num2str(ii) ';']);
    A = [epsilon 2 6 22; 5 7 5 34; 3 2 1 10];
    Emax(index) = max(abs(GaussElimination(A)-GaussElimination_Pivot(A)));
end
Emax

运行代码,结果为

>> GaussElimination_Compare
第3个主元素为零

Emax =

    0.0000
    0.0000
    0.4211
    3.0000

当epsilon不是很小的时候,机器误差就不是很大,此时可以不选取主元以减少计算量;当epsilon逐渐减小时,采用不选主元的方法计算时,精度逐渐不理想,误差开始增大;最后当epsilon很小时,不采用列主元得到的结果已经不正确了,最后会因为精度问题而报错(机器计算最小精度为1e-15,这时将epsilon视为0),从Emax中第四个值可以看出,此时不选主元来解时程序就会报错(Emax初始化为零,此时与准确解相差为3,故Emax第四个元素为3)。

由此可以看出,Gauss消去法的精确度不如列主元消去法,特别是当矩阵规模变大时,由于迭代次数增加,舍入误差累计,所得结果与精确解差距较大。最终得出的矩阵条件数都较大,尤其是当矩阵阶数变大时,条件数剧增,舍入误差对解的影响很大。在这样的情况下就更应该考虑更优化的算法。

  • 7
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实验一 列主元 【实验内容】 1. 理解高斯顺序; 2. 理解主元高斯求解精度上的优点; 3. 完成列主元的程序; 4. 会用系统内置命令求解有唯一解的线性方程组; 【试验方与步骤】 一 、 回答下面的问题 1. 什么是线性方程组直接解和迭代解,各自的特点和使用问题类型是什么? 2. LU 分解是直接解还是迭代解, L 、 U 矩阵的特点是什么,应用在哪些问题 中,请举例说明。 3. 给出一个舍入误差严重影响计算结果精度的例子,试着能否从多个角度说明产 生该问题的原因。 4. 迭代解的收敛性有什么意义,收敛条件用什么判定? 5. 给出例子,并说 明迭代收敛的速度。 二 、 完成下计算,写出代码 1. 用 crame 则、用 LU 分解函数、逆矩阵函数分别完成 P35 例 3.2.1 2. 编写列主元程序,完成 P35 例 3.2.1 和习题 3 第 2 题 3. 用雅克比、高斯 塞德尔和 SOR 迭代完成习题 3 第 13 题,进行收敛速度的比较 分析 第 2 页 共 13 页 【实验结果】 一、第一大题 1.线性方程组的解 2.LU 分解 1. LU 分解属于直接解 2. L 矩阵特点:一个对角线上的元素全为1 的下三角矩阵(即单位下三角矩阵)。 3. U 矩阵特点:上三角矩阵 4. 应用:LU 分解主要应用在数值分析中,用来解线性方程、求反矩阵或计算行式 解 直接解 迭代解 定义 经过有限步算数运算,可求得方程组 的精确解的方 用某种极限过程逐步逼近线性 方程组精确解的方 特点 运算步骤有限、可得精确解 极限逼近思想 适用问 题类型 计算过程中没有舍入误差 向量值序收敛于向量* x 即 *) ( limx x k k = → 举例    − = + = 3 20 26 5 2 8 x y x y    = − = = = = −    − = + = * 1 * 2 53 106 2, 1 3 20 26 50 20 80 y x x x y x y x y 即有精确解 ,所以 两式相加,得    − = + = 3 20 26 5 2 8 x y x y , 0,1,2,... 0.15 1.3 0.4 1.6 ( 1) ( ) ( 1) ( ) =     = − = − + + + k y x x y k k k k 改写为迭代公式 其结果不断逼近精确解 然后不断迭代, 取 0,得 1.6, -1.3, (0) (0) (1) (1) x = y = x = y = 第 3 页 共 13 页 3.舍入误差严重影响计算结果精度的例子 建立 dx的递推公式 x x I n n  + = 1 0 5 (教材第二页) 1:      − = − = − 1 0 5 1 5 ln 6 ln n In n I I 2: 由0  In  In − 1,得5In − 1  In +5In − 1  6In − 1      = − +    =  +    + =    − − − n I I I I n I n n I I n n n n n 5 1 5 1 0.0087301587 0.0087301587 2 1 ) 5 21 1 6 21 1 ( 5 1 6 1 0 1 5 1 20 20 将 1 带入上式,得 1 由于计算机只能存储有限位小数,所以在1 中,随着n 的增大,其误差就会越来 越大,最后很大程度的偏向精确解;但是在2 中尽管20 I 取得比较粗略,但是随着n 的增大,其误差随传播逐步缩小,所以其最后计算得到的结果是可靠的。 4.迭代解的收敛性 迭代解 的收敛性 意义 无线逼近精确解,便于在计算机上实现编程 收敛条件的 判定 向量值序收敛于向量x * 即 * ( ) limx x k k = → 第 4 页 共 13 页 5.举例说明迭代收敛的速度 分别用雅可比迭代(J)、高斯—塞德尔迭代(G-S)、超松弛迭代(SOR)计算方组 =            − − − − 0 1 4 1 4 1 4 1 0           3 2 1 x x x =   10 8 10 雅可比迭代 高斯—塞德尔迭代 次 数 X1 X2 X3 误差 次数 X1 X2 X3 误差 1 2.5000 2.0000 2.5000 2.1594954 1 2.5000 2.6250 3.1563 1.4570586 2 3.0000 3.2500 3.0000

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值