戳气球

戳气球

n 个气球,编号为0n - 1,每个气球上都标有一个数字,这些数字存在数组 nums 中。

现在要求你戳破所有的气球。戳破第 i 个气球,你可以获得 nums[i - 1] * nums[i] * nums[i + 1] 枚硬币。 这里的 i - 1i + 1 代表和 i 相邻的两个气球的序号。如果 i - 1i + 1 超出了数组的边界,那么就当它是一个数字为 1 的气球。

求所能获得硬币的最大数量。

示例 1:

输入:nums = [3,1,5,8]
输出:167
解释:
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
coins =  3*1*5    +   3*5*8   +  1*3*8  + 1*8*1 = 167

示例 2:

输入:nums = [1,5]
输出:10

提示:

  • n == nums.length
  • 1 <= n <= 300
  • 0 <= nums[i] <= 100

代码:

																	方程式

在这里插入图片描述

​ *

//记忆搜索
class Solution {
public:
    vector<vector<int>> rec;
    vector<int> val;

public:
    int solve(int left, int right) {
        if (left >= right - 1) {
            return 0;
        }
        if (rec[left][right] != -1) {
            return rec[left][right];
        }
        for (int i = left + 1; i < right; i++) {
            int sum = val[left] * val[i] * val[right];
            sum += solve(left, i) + solve(i, right);
            rec[left][right] = max(rec[left][right], sum);
        }
        return rec[left][right];
    }

    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        val.resize(n + 2);
        for (int i = 1; i <= n; i++) {
            val[i] = nums[i - 1];
        }
        val[0] = val[n + 1] = 1;
        rec.resize(n + 2, vector<int>(n + 2, -1));
        return solve(0, n + 1);
    }
};
//DP	
class Solution {
public:
    int maxCoins(vector<int>& nums) {
        int n = nums.size();
        vector<vector<int>> rec(n + 2, vector<int>(n + 2));
        vector<int> val(n + 2);
        val[0] = val[n + 1] = 1;
        for (int i = 1; i <= n; i++) {
            val[i] = nums[i - 1];
        }
        for (int i = n - 1; i >= 0; i--) {
            for (int j = i + 2; j <= n + 1; j++) {
                for (int k = i + 1; k < j; k++) {
                    int sum = val[i] * val[k] * val[j];
                    sum += rec[i][k] + rec[k][j];
                    rec[i][j] = max(rec[i][j], sum);
                }
            }
        }
        return rec[0][n + 1];
    }
};
气球问题,也称为气球破问题(Burst Balloons),是一道经典的动态规划问题。 题目描述: 给定一个数组nums,其中nums[i]表示第i个气球的价值。你可以气球i(i从0到n-1),获得nums[left] * nums[i] * nums[right]的价值,其中left和right分别是气球i左侧和右侧的气球的编号。当i被破后,left和right就变成相邻的气球。在破所有气球之前,你可以任意次地气球。 求最大的价值。 例如,给定数组[3,1,5,8],可能的破顺序为1, 3, 0, 2(即先破1号气球,再破3号气球,然后破0号气球,最后破2号气球),最大的价值为167。 解题思路: 采用动态规划的思路,设dp[i][j]表示破区间[i,j]内的所有气球能得到的最大价值。假设最后破的气球是k,则区间[i,j]可以分为三个部分:[i,k-1]、k、[k+1,j]。则dp[i][j]的状态转移方程为: dp[i][j] = max(dp[i][k-1] + nums[i-1]*nums[k]*nums[j+1] + dp[k+1][j]), i<=k<=j 其中,nums[i-1]和nums[j+1]表示气球i-1和气球j+1能得到的价值,因为在区间[i,j]外的气球已经被破了。 时间复杂度:O(n^3) 参考代码: class Solution { public: int maxCoins(vector<int>& nums) { int n = nums.size(); nums.insert(nums.begin(), 1); nums.insert(nums.end(), 1); vector<vector<int>> dp(n+2, vector<int>(n+2, 0)); for(int len=1; len<=n; len++) { for(int i=1; i<=n-len+1; i++) { int j = i+len-1; for(int k=i; k<=j; k++) { dp[i][j] = max(dp[i][j], dp[i][k-1] + nums[i-1]*nums[k]*nums[j+1] + dp[k+1][j]); } } } return dp[1][n]; } };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值